The Mountain Pipit in the Drakensberg

JOHN MENDELSOHN

INTRODUCTION
Most pipits are hard to identify, either in the field or in the hand. Apart from the similar colour and pattern of several species, positive identification is complicated by plumage wear, soil staining, regional colour variation, extensive movements, a lack of good information on display characters, and ambiguous or incorrect diagnostic criteria in field guides. Then there is the question of what appearances really mean, for, although two birds may look identical, they could belong to different species. Such birds, often called sibling species, are well known among warblers, where two species may look alike, but the birds recognise conspecifics by their song and display. Given these kinds of problems it is therefore quite likely that some new or unrecognised pipit species are lurking among those frustrating IDs.

HISTORICAL ASPECTS
One such bird has recently come to light, the Mountain Pipit in the Drakensberg of Lesotho and the eastern Cape. It was first collected in 1946 by Colonel Jack Vincent in the Sankubucu valley. He described it in 1951 as a new subspecies of Richard's Pipit: Anthus novaezeelandiae edithus. Nobody saw the bird again in the Drakensberg until Clive Quickelberge (1972) had one collected on 19 September 1968 near the Likaleng store in Lesotho. He too accepted it as a race of Richard's Pipit, as did all other authors of works on southern African birds (e.g. McLachlan & Liversidge 1957; Clancey 1966, 1980).

In addition to these two records, a number of birds, either identical or very similar in appearance to the Drakensberg birds, had been collected further north and west at Kimberley (29 April 1959), Francistown (22 October 1965), Okahandja (26 March 1958), Erongo (10 May 1938), Friedrichsfelde, near Karibib (1 November 1938), and at six localities on or near the Copperbelt, in northeastern Angola, northwestern Zambia and southeastern Zaire.

Two names were proposed on the basis of these specimens. The first was that of E. Stresemann who in 1938 gave the name (as a full species) of Anthus hoeschi to the specimen from Erongo; the Friedrichsfelde bird was later considered to be identical. Then in 1946 C.M.N. White named his Copperbelt birds as a new Richard's Pipit race: Anthus novaezeelandiae lwemaran.

P.A. Clancey (1978), after comparing all these specimens, reached the conclusion that the Drakensberg pipits migrate northwards and that all these specimens (except the two called Anthus hoeschi) were in fact migrants from the Drakensberg, the birds moving off the cold mountains during the winter non-breeding period. That being the case, White's name was the earliest one, so the birds in Lesotho and all the other specimens came to be called Anthus novaezeelandiae lwemaran.

In that publication (1978) Clancey considered that Stresemann's two hoeschi were actually non-breeding migrants from somewhere in the Angolan Highlands. However, nobody (e.g. Hall (1961), White (1957), Clancey (1978)) was ever confident about the proper identity of Stresemann's birds.

So much for history, at least for the moment, because, unfortunately, we have to go back to these old names later on. For the time being, I shall refer to these pipits breeding in the Drakensberg as Mountain Pipits.

In February 1980, Ian Sinclair and I spent several days collecting birds in the Naudesnek area of the eastern Cape. We returned to Durban with a few pipits that P.A. Clancey later identified as Mountain Pipits. However, these specimens could no longer be considered as highland variants of Richard's Pipit because with them we had collected a typical specimen of the Richard's Pipit subspecies that occurs all over Natal and the lower areas of the eastern Cape. By definition, subspecies or races are mutually exclusive on a geographical basis (species, of course may or may not overlap one another). These few birds from Naudesnek therefore
suggested that typical Richard’s Pipits were coexisting or overlapping with Mountain Pipits and that the populations were distinct as separate species.

Dicey evidence one might say — one geographic variant of a species in amongst a population of another variant — so what?

Since then more trips to Naude'snek have been made to look at the relationship between these two birds. Fortunately, the initial conclusion of specific distinctiveness seems to hold water, for, not only is there an extensive area of overlap, but the two birds also seem to differ behaviourally.

ALTITUDES AND HABITATS

Naude'snek (Fig. 1) is a mountain pass over the Drakensberg in the eastern Cape. The road leads from Mt. Fletcher and Maclear in the east to the small village of Rhodes on the western side of the mountain; it is apparently the highest public road accessible to two-wheel drive vehicles in South Africa. The plateau on top of the Drakensberg is 10 — 20 km wide in this area and ranges in altitude between about 2300 and 2700 m a.s.l. The escarpment on both the west and east sides is fairly steep, while the surrounding lower areas consist of rolling hills between 1700 and 1950 m a.s.l. The eastern side of the high plateau and surrounding lowlands get considerably more rain than the western side, so they consist largely of lush grasslands. Vegetation in the western lowlands is more karroid while, on top of the plateau, there is open grassland and large areas of what is described as high altitude ericoid heathland.

The variety of habitats and altitudes within a relatively small area makes the
birdlife in this section of the Drakensberg particularly interesting. Many species replace each other at different levels. Familiar Chat and Rock Bunting which are abundant in the west and up the western escarpment to about 2 000 m are abruptly replaced higher up by Sickewing Chats and Cape Bunting respectively. In the case of pipits, there is some degree of replacement, but a first attempt to identify habitat and altitude preferences showed that there was much overlap in some areas. Richard’s Pipit appears to have a strong preference for relatively short grassland on gentle slopes and flat ground. Below an altitude of about 2 000 m they are abundant in such areas, with pairs at intervals of 200 — 400 m. Above this level they are less numerous, pairs being perhaps 1 km apart in suitable flat grassland at 2 300 — 2 700 m a.s.l. Mountain Pipits, on the other hand, are abundant on top of the escarpment — in some areas pairs are less than 100 m apart. They also occupy a greater variety of habitats, including flat grassland (where they are within metres of Richard’s Pipits), rocky hillsides, and heathland.

I could not find Mountain Pipits in the surrounding western lowlands or on the western slopes of the escarpment. However, they were fairly abundant on the eastern slopes, down to a lower limit of 2 000 m a.s.l. In this area pairs were perhaps 500 m apart on average and appeared to breed only on steep grassland slopes. They were thus separated to some degree from Richard’s Pipits on flatter ground. There was some overlap, however, in their feeding areas because Mountain Pipits appeared frequently to fly down to feed on flat grassland and in ploughed fields amongst Richard’s Pipits.

No doubt these two pipits have different altitude and habitat preferences elsewhere in the Drakensberg. However, these observations indicate that, while their distributions do overlap in the Naudeesnek area, they also have different ecological requirements.

BEHAVIOUR

I spent some time listening to the calls and watching the displays of Mountain and Richard’s Pipits. Superficially, they appear quite similar, but, while much more observation is required, each call and display also differs in several respects. The typical display flight of a Richard’s Pipit starts with it flying off (from a raised perch or the ground) and rising obliquely to a level 30 — 75 m above the ground. Then it cruises with a dipping undulating flight over a distance of 100 — 500 m, before diving steeply to land. During the flight the bird gives a three or four note ‘prit.prit.prit.prit.’ as it rises to cruising level and at the trough of each undulating loop. Then, during the steep descent, they call a long ‘prit.prit.prit.prit........’ until they alight. Mountain Pipits differ in giving only a single note ‘chiri’ at intervals during the rising and cruising flight. They also probably cruise without the dipping undulations, although I want to confirm this point. During the steep descent they produce a continuous string of notes, ‘chiri.chiri.chiri........’ until finally landing.

Both species also sing from elevated perches, like rocks and fences. There are two syllables, ‘tuchit......tuchit.....’ in the song of Mountain Pipit, while the Richard’s song has three syllables, ‘shishiti......shishiti......’ The alarm calls, given as you approach a nest, also sound different. Mountain Pipits repeatedly call ‘wit....wit....wit....’ while Richard’s Pipits give a quicker ‘chik..chik..chik..chik......’

These differences in calls and display were determined by tape recordings and observations of some birds that were subsequently collected. Tony Harris, of the Transvaal Museum, has made some sonagrams of the calls and the differences do seem marked.

BREEDING

I have little information on the breeding biology of Mountain Pipits. Superficially, most aspects seem similar to those of Richard’s Pipits. Eggs are apparently laid mainly in late November, December and early January. The nest is a typical pipit cup of grass tucked well under a clump of grass. Three or four eggs seem to be usual, and a clutch of three, found by Ian Sinclair, had the following measurements: 21.5 x 15.4; 21.8 x 15.4; 21.4 x 15.3 mm. The markings form a heavy ring around the widest point of the egg. Both the size and colour of these eggs seem similar to those of Richard’s, Nicholson’s Anthus similis and other pipit species.
FIELD IDENTIFICATION

In addition to the behavioural characters described earlier, Mountain Pipits may be identified by looking closely at a combination of colour features. The bird is closest to Richard’s and Nicholson’s Pipit, being in general a little bigger and darker. However, the following characters, when taken together, are diagnostic: the mantle is streaked, the upper breast is heavily marked with large dark spots, the outer tail feathers are buffy, and the base of the bill is pinkish or flesh coloured. The streaked mantle separates it from Buffy Antius vaalensis and Plainbacked Pipits A. leucophrys, while the flesh base of the bill and outer tail distinguishes it from Richard’s Pipit which has yellow on the bill and white outer tail. Finally, the heavy breast spots differ from the streaks on Nicholson's Pipit. In the hand, the wing formula is identical to that of Richard’s Pipit.

These characters probably hold only for adults in breeding condition. Young birds and non-breeders may look quite different (for example, young Richard’s Pipits have a pink base to the bill).

CONCLUSION

This article has described features which suggest that the Mountain Pipit breeding in the Drakensberg is specifically distinct from other southern African species, and is therefore an addition to this region’s avifauna. If this is true, what scientific or Latin name do we give the bird? I have already mentioned some possibilities: editus, ivenanum, and hoeschi. Dr P.A. Clancey (1984) has just proposed that the Drakensberg birds and those possible migrants collected in South West Africa, Botswana, Kimberley, Zambia, Angola and Zaire (on which the three names were proposed) are all the same thing and should be given the same and earliest available name: Antius hoeschi. He may be right.

However, for two reasons I believe that the question of a Latin name should not be answered until other evidence is produced. Firstly, the two specimens on which hoeschi was proposed are in a museum in East Berlin and have not been examined recently. Dr H.E. Wolters and others who have seen the two specimens have reported that there are some differences between them and those collected in Zambia, Angola, Botswana, Zaire and the Drakensberg. Some people have stressed these differences while others have disregarded them. Unfortunately, none of these specimens shows the true colour of the bill, and none will ever sing or display again.

Secondly, there are many populations of big and dark pipits isolated on highland areas in Africa, and all show some similarities to the colour and pattern of Mountain Pipits. Most of these isolates have been given names, such as cinnamomeus (Mt Cameroons), cinnamomeus (Ethiopia), lombwensis (Itombwe Highlands) and, of course, the Mountain Pipit in the Drakensberg. At present we have no idea how these isolated populations relate to each other or other pipit species. There is little or no information available on calls, displays, protein variation, soft part colours or possible post-breeding movements. And, of course, we also don’t really know what plumage colours and patterns actually mean. It is conceivable that all these highland isolates belong to one species with each population breeding on its own “island”. Or perhaps each mountain area has an endemic species? Maybe the answer lies elsewhere or somewhere in between?

Whatever the case, we need more information and, until that is available, I believe that it is premature to give too much weight to names that indicate that our Mountain Pipit is either a good species or a subspecies. All that one can say now is that the bird is an addition to the southern African avifauna, but we don’t know whether the same species occurs elsewhere or not.

ACKNOWLEDGEMENTS

I thank Dr P.A. Clancey, Ian Sim, Charlie Mowat for their help and discussions. Mr and Mrs P.A. Coetzee were kind hosts to me at Naudeesnek.

REFERENCES

REVIEWS

WHERE TO WATCH BIRDS IN SOUTHERN AFRICA. 1983. A. Berruti and J.C. Sinclair. Struik (R19,95)

Are you a birder who has everything or do you know a birder who has everything and for whom you need an ideal gift? Either way, this is a book you can ill afford to overlook. It is a most attractively produced volume in hard covers, edited and partly authored by Berruti and Sinclair. Southern Africa is divided into 11 major regions, each written up by one or more contributors including such well-known names in the birding world as Rob Martin, Tony Tree, Carl Vernon, Alan Kemp, Gordon Bennett, Deryck Day, Richard Livesidge and Charles Climming.

These regions are not treated with equal thoroughness: the Orange Free State and Lesotho come in for scanty coverage with only six pages between them. This is a pity, since both these areas have some excellent birding spots which could have been looked into more closely by some judicious local inquiry. Anyway, the rest of southern Africa south of the Kunene, Okavango and Zambezi rivers, is dealt with in gratifying detail.

Each major region is divided into localities — 123 in all — most having a clear map showing the main roads and towns. A locality is subdivided in turn into habitat, directions (how to get there), birds (species special to the locality), accommodation (with addresses and telephone numbers, including both hotel and camping), permits (where necessary) and a reference to any publication dealing with that locality, if such exists.

This is absolutely tailor-made for use by the tourist and traveller, especially overseas visitors who have only a limited time in southern Africa. For this reason, this book fills a long-felt need in a part of the world flooded with bird books dealing only with birds.

In the front is a table of many pages called “status tables” listing all the birds in southern Africa in alphabetical order, and indicating in which major region each species occurs, how common it is, when it can be found there, and finally the localities in the region where it occurs. Endemic species are identified by asterisks; a count shows there to be 145 endemics, which makes southern Africa a choice birding hot-spot where “twitchers” (bird listsers obsessed with adding new species to their life-lists) can see many new species in a relatively short space of time. The status tables are an excellent feature, allowing for quick reference.

The book is pleasing to handle, a convenient size (25 cm x 17.5 cm), and fascinating to read. In addition to the neat maps and attractive line drawings of birds and scenes, there are 64 colour photographs illustrating just over 60 species of birds, many of them endemics and some of them of species that have not to my knowledge been published before, such as Botha’s Lark, Knysna Warbler, Barecheeked Babbler and Layard’s Titi-babbler.

The authors have gone to a lot of trouble to make the book easy to use, attractive and comprehensive. Even southern Mozambique has been included as a major region, although tourism there is almost impossible for South Africans. I am sure that this book will stimulate an interest in birds in southern Africa every bit as much as the field guides and handbooks that are already available.

Gordon Maclean