Radiocarbon Dates from Big Elephant Shelter, Erongo Mountains, South West Africa

Article in The South African Archaeological Bulletin · December 1976
DOI: 10.2307/3887735

1 author:
Lyn Wadley
University of the Witwatersrand
159 PUBLICATIONS 6,594 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Geomagnetic field excursions for Late Pleistocene-Holocene deposits in South Africa and Lesotho:Geoarchaeological and chronological implications for the Later and Middle Stone Age View project
- Ancient hunting poisons View project

All content following this page was uploaded by Lyn Wadley on 31 May 2016.

The user has requested enhancement of the downloaded file.
Introduction

Big Elephant Shelter is situated in the southern Erongo Mountains at approximately 15°40'E; 21°42'S. The site can be divided into two sections: a narrow NE. shelter with a low ceiling and a larger NW. shelter. The former shelter contains sparse scatterings of shallow deposit; the latter contains three distinct occupation hollows partly filled with leaves and bedding grasses and surrounded by branches of collapsed brushwood screens.

In 1959, the site was visited by J. D. Clark and J. Walton and a surface collection of artefacts was made, and a detailed description of the site and finds was published in 1962 (Clark & Walton 1962). Subsequently, two radiocarbon dates were obtained for the site, one of 2550 ± 80 B.P. (UCLA-724A) from the NE. shelter and one of 1400 ± 80 B.P. (UCLA-724B) from the NW. shelter (Beaumont & Vogel 1972: 83). In both cases the dated material was associated with potsherds.

In 1974, I undertook the first excavations in Big Elephant Shelter; to date, one metre square of deposit has been removed from the NE. shelter and thirteen metre squares from the NW. shelter.

Stratigraphy and dating

The stratigraphy of the NW. shelter is extremely complex and the significance of the varied ash and soil lenses is not yet fully understood. The maximum depth of deposit is 50 cm and within this shallow accumulation several cuttings (for hearths and bedding hollows) have been made by the prehistoric occupants.

Three radiocarbon dates are now available from the 1974 excavations:

- Pta-1556 (Square L4, 5 cm deep) 2600 ± 50 B.P.
- Pta-1557 (Square L4, 35 cm deep) 3130 ± 40 B.P.
- Pta-1558 (Square K5, 31 cm deep) 1080 ± 50 B.P.

The first two dates were obtained from charcoal samples from the largest of the occupation hollows. The third date is from a charcoal sample collected near the shelter entrance where, apparently, the more shallow deposit; the latter contains three distinct occupation hollows partly filled with leaves and bedding grasses and surrounded by branches of collapsed brushwood screens.

In 1974, I undertook the first excavations in Big Elephant Shelter; to date, one metre square of deposit has been removed from the NE. shelter and thirteen metre squares from the NW. shelter.

The stratigraphy of the NW. shelter is extremely complex and the significance of the varied ash and soil lenses is not yet fully understood. The maximum depth of deposit is 50 cm and within this shallow accumulation several cuttings (for hearths and bedding hollows) have been made by the prehistoric occupants.

Three radiocarbon dates are now available from the 1974 excavations:

- Pta-1556 (Square L4, 5 cm deep) 2600 ± 50 B.P.
- Pta-1557 (Square L4, 35 cm deep) 3130 ± 40 B.P.
- Pta-1558 (Square K5, 31 cm deep) 1080 ± 50 B.P.

The first two dates were obtained from charcoal samples from the largest of the occupation hollows. The third date is from a charcoal sample collected near the shelter entrance where, apparently, the more recent site occupants excavated into the earlier deposits.

The date of 2600 ± 50 B.P. is provocative in that although twelve body sherds and one rim sherd were obtained from the same level as the charcoal sample, none of the potsherds was directly associated with the dated charcoal. Nevertheless, the evidence, in combination with the UCLA date of 2550 ± 80 B.P., supports the suggestion that pottery was in early use in the Erongo Mountains.

Description of finds

In addition to the pottery described above, sherds were present in the surface ash lenses and amongst the bedding grasses. A clay smoking-pipe and two broken decorated spouts are the only diagnostic pieces. The same levels yielded three glass, two copper and ten tubular iron beads.

Bone artefacts include linkshafts, points, beads, pendants, spatulas and an awl. Wood was used for the manufacture of fire-drills, arrowshafts, digging-sticks, beads and a small peg. Numerous ostrich eggshell beads and pendants were recovered as well as the remains of two ostrich egg waterbottles.

The excavated area yielded only 300 stone implements, basalt and quartz being the raw materials most frequently used. Scrapers comprise 50.6% of this assemblage, backed tools 33.6% and ground stone-work 15.0%.

Botanical and faunal remains

A wide variety of plants was brought into the shelter for use as food and bedding. However, detailed study of bulk botanical samples indicates that the staple plant diet of the shelter occupants was the corm of a Cyperus sp. and that relatively small amounts of other plant food were consumed. Plants used for the construction of bedding places are of some interest; Elephatis sp. was initially laid down, forming a prickly, springy base which was then cushioned with cut grasses and leafy plants.

The small faunal sample includes the remains of hyrax, steenbok/grysbok, springbok, leguaan, tortoise, and bird. Larger bovids are also represented and these are probably mountain zebra, gemsbok and kudu. Remains of one sheep and possibly a cow were recovered from the surface occupation debris and postcranial material suggesting bovids of the size of sheep occurs in all the levels containing pottery.

Although fieldwork at Big Elephant Shelter has, for the present, been completed, only preliminary analysis of the material recovered has been made so far. Until detailed study of this material is finalized, interpretation of the results presented above would be premature.

Acknowledgements

I am grateful to Dr R. G. Klein for identifying the faunal remains, to Mr W. Giess for identifying the plant material and to Dr J. C. Vogel for providing the radiocarbon dates.

References

