Total Population Estimates

<table>
<thead>
<tr>
<th>Species</th>
<th>Population estimate</th>
<th>Lower 95% CL</th>
<th>Upper 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemsbok (U)</td>
<td>3,240</td>
<td>2,130</td>
<td>4,940</td>
</tr>
<tr>
<td>Giraffe (U)</td>
<td>290</td>
<td>150</td>
<td>590</td>
</tr>
<tr>
<td>Kudu (U)</td>
<td>570</td>
<td>250</td>
<td>1,590</td>
</tr>
<tr>
<td>Ostrich</td>
<td>640</td>
<td>370</td>
<td>1,120</td>
</tr>
<tr>
<td>Springbok (U)</td>
<td>5,330</td>
<td>2,870</td>
<td>9,890</td>
</tr>
<tr>
<td>Steenbok (U)</td>
<td>580</td>
<td>195</td>
<td>1,730</td>
</tr>
<tr>
<td>Zebra (U)</td>
<td>6,010</td>
<td>3,010</td>
<td>11,970</td>
</tr>
</tbody>
</table>

All above estimates are derived using DISTANCE analysis. Values without brackets are numbers of animals seen along transects. Values inside brackets are minimum estimates assuming all animals within 500m of each side of the transect line are detected. There is no adjustment for drop off in detection with distance from the transect line. Consequently the totals of estimates indicated here will not add up to the total population estimates (above).

Rainfall

Average rainfall mm

<table>
<thead>
<tr>
<th>Year</th>
<th>Average rainfall mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>320</td>
</tr>
<tr>
<td>2004</td>
<td>540</td>
</tr>
<tr>
<td>2005</td>
<td>440</td>
</tr>
<tr>
<td>2006</td>
<td>300</td>
</tr>
<tr>
<td>2007</td>
<td>190</td>
</tr>
<tr>
<td>2008</td>
<td>750</td>
</tr>
<tr>
<td>2009</td>
<td>540</td>
</tr>
<tr>
<td>2010</td>
<td>300</td>
</tr>
<tr>
<td>2011</td>
<td>750</td>
</tr>
<tr>
<td>2012</td>
<td>150</td>
</tr>
<tr>
<td>2013</td>
<td>300</td>
</tr>
<tr>
<td>2014</td>
<td>100</td>
</tr>
<tr>
<td>2015</td>
<td>200</td>
</tr>
</tbody>
</table>

Rainfall season is from July to June and is consequently assumed to hold no animals. Model selection: U = uniform key; H = half normal.

NDVI

Average NDVI

<table>
<thead>
<tr>
<th>Year</th>
<th>Average NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.25</td>
</tr>
<tr>
<td>2004</td>
<td>0.30</td>
</tr>
<tr>
<td>2005</td>
<td>0.25</td>
</tr>
<tr>
<td>2006</td>
<td>0.30</td>
</tr>
<tr>
<td>2007</td>
<td>0.25</td>
</tr>
<tr>
<td>2008</td>
<td>0.30</td>
</tr>
<tr>
<td>2009</td>
<td>0.25</td>
</tr>
<tr>
<td>2010</td>
<td>0.30</td>
</tr>
<tr>
<td>2011</td>
<td>0.25</td>
</tr>
<tr>
<td>2012</td>
<td>0.30</td>
</tr>
<tr>
<td>2013</td>
<td>0.25</td>
</tr>
<tr>
<td>2014</td>
<td>0.30</td>
</tr>
<tr>
<td>2015</td>
<td>0.25</td>
</tr>
</tbody>
</table>

NDVI is a measure of the density of chlorophyll in vegetation cover. It can be used as an indicator of the amount of biomass available to wildlife. The trend shown here is an average for the whole area over a 10 day period in the beginning of April.