Integrated Water Resources Management

Nossob-Auob River Basin
About this booklet

This booklet is intended for all water users to encourage awareness of the water sources, water use and its values, especially in a dry country as Namibia. There are no perennial rivers within the borders of Namibia and water resources are very unevenly distributed across the country. The water resources challenges in Namibia can only be addressed through efficient water resources management including development of an integrated framework and provision of infrastructure to ensure water security. In this regard, this booklet is compiled for the Ministry of Agriculture, Water and Forestry to introduce the concept of Integrated Water Resources Management (IWRM) and how it can be implemented with emphasis on stakeholder participation and decision making at the lowest appropriate level. The contents of the booklet includes:

What is IWRM and why is it important? 3
Welcome to the Nossob-Auob River Basin 4
Where does the water in the basin come from? 5
Who supplies and manages the water in the basin? 6
Who uses water and how? 8
Water demand management- how to use water more efficiently 10
Water quality 14
Water sanitation and hygiene 15
Challenges of IWRM in the basin 16
Future of water in the basin 17
Basin management related information 18
Acknowledgements 20
What is IWRM and why is it important?

Integrated Water Resource Management (IWRM) is defined as a process that promotes the coordinated development, management and use of water, land and related natural resources (people, vegetation, animals and eco-systems) for economic, social and environmental sustainability. The IWRM process further involves participatory approaches which include discussions, planning and negotiations between stakeholders of the basin on important issues to achieve social equity, economic efficiency and environmental sustainability.

IWRM is implemented at a basin level in Namibia, linking all aspects of the basin, so that the users can understand the interactions between resource use, economic value and conservation, as well as the impacts of their activities on eco-systems and the goods and services they provide.

The knowledge gained from the IWRM process, enables the stakeholders to understand the threats, prescribe mitigation measures and predict changes, and then manage them accordingly.
Welcome to the Nossob-Auob River Basin!

Water and land resources management in Namibia is carried out at the lowest management level, known as the basin level, to broaden the management process.

Hence, Namibia is divided into 11 water management areas referred to as “water basins” according to the common drainage flows of major water sources such as rivers, groundwater systems (aquifers), water supply canals and pipelines.

The **Nossob-Auob River Basin** is located in the south-eastern part of Namibia across parts of the Hardap, Karas, Khomas and Omaheke Regions and is predominantly characterized by the Kalahari desert shared across the Namibian-Botswana borders.

Water resources are unevenly distributed across the basins. About 80%+ of the country relies on groundwater as a major water source.

The figures on the map represent the spatial distribution of water resources (surface and groundwater -Mm³ per year).
Where does the water in the basin come

The water comes from dams in the ephemeral rivers and groundwater. The Nossob-Auob Basin is comprised of two main rivers, the Auob and Nossob (Black and White), which join the Molopo River in Botswana. There are several tributaries (smaller rivers) of these rivers, which include the Olifants, Seeis and Skaap. The Oanob Dam was built in the Oanob river to supply water to Rehoboth town. The Oanob River flows eastwards from the central highland and is considered part of the Nossob-Auob Basin, but the river dissapates into the sand to the south of Rehoboth.

Two dams (Daan and Tilda Viljoen) were built on the Black Nossob river, while the Otjivero Dam was built on the White Nossob river all supplying water to Gobabis. Groundwater comes from the Stampriet Artesian Aquifers and the upper Kalahari aquifer. The groundwater from these aquifers are supplied to towns and settlements in the basin. Pans (shallow, seasonal, unvegetated depressions in the landscape) are very common in the basin (for example the Aminius pan), but only fill with water after good rains or when ephemeral rivers flow into them.

Rainfall of the basin is low and unreliable with high evaporation rates. Rainfall ranges from 350 mm to less than 100 mm per year across the basin area.

Several excavation/earth dams are found in the basin and collect seasonal surface water, which is primarily used for livestock water supply. Although a dam is expensive to build, the water from dams in the communal areas is free for people and livestock to use. The major disadvantages of earth dams are that it can only recharge water in one place and it is not good for storing water because they loose most of the water through evaporation.
Who supplies and manages the water in the basin?

The institutions responsible for water resources are divided into the following categories for ensuring efficient and effective management thereof:

• **Overall water resource inventory, monitoring, control, regulation and management:** Directorate of Resources Management within the Ministry of Agriculture, Water and Forestry (MAWF).

• **Bulkwater supply:** Namibia Water Corporation (NamWater) abstracts water from primary sources (e.g., rivers, aquifers or dams) and supplies to some end-users directly.

• **Self-providers:** These are commercial farmers, tour operators, mines and nature conservation parks, subject to appropriate agreements and licences, supply their own water.

• **Water supply to rural areas:** Directorate of Water Supply and Sanitation Coordination in the MAWF.

• **Water supply to urban areas:** Local Authorities and Regional Councils buy water from NamWater or supply own water from boreholes for delivery to end users.

For further information contact: Department of Water Affairs and Forestry, Tel: 061-208 7696
The Water Resources Management Act makes provision for the establishment of basin management committees (BMCs) to make sure that integrated management takes place at the basin level. The role of a BMC is to provide scope for addressing various issues affecting water resources in the basin, ranging from efficient water use to monitoring the health of the basin.

The aim of such a committee is to equip basin communities (ensuring gender equality wherever possible) to take full ownership of their own development (through developing a strategic basin management plan) with strong support from the relevant service providers. The committee is ideal for knowledge and experience sharing to realize a common vision for the basin, through principles such as stakeholder participation, transparency and information sharing.

The process of establishing basin management committees is currently being implemented in phases and thus the Nossob-Auob basin committee is still pending based on demand and priority assessments. However, there is at present a Stampriet Artesian Aquifer Management Committee in place which is responsible for assisting the Department of Water Affairs and Forestry with the management of the groundwater sources in the Artesian Aquifers.
Who uses water and how?

The supply of water from surface and groundwater resources to competing demands is prioritised in Namibia. The first is water for domestic purposes (including livestock water for both subsistence and commercial farming) and the second is water for economic activities such as mining, industries and irrigation.

The people in the basin are mostly confined to the main town areas of Rehoboth (estimated 21 300 people) and settlement areas such as Witvlei, Leonardville, Aminius, Aranos and Stampriet as well as the commercial farming area with an estimated rural population of 40 600. Gobabis (population estimated at 19 200) is on the border between the Nossob-Auob and the Eiseb-Epukiro Basin. Gobabis obtains surface water and groundwater sources from the Nossob-Auob basin.

Water in the Nossob-Auob Basin is mostly used for domestic and livestock farming.

How much water do we require? (in terms of 10-litre buckets):

- One person uses on average 15 litres (one and half bucket) per day
- One goat/sheep/koedoe/zebra/oryx drinks on average 12-45 litres (about one to four buckets) per day
- One cow drinks on average 30 litres (three buckets) per day
*An average household of four people thus consumes 60 litres per day (6 buckets)

Water-use allocation in the Nossob-Auob Basin
Source: IWRMP Joint Venture, Theme Report 2. 2010
The basin is characterized by large-scale commercial farming activities (mainly with cattle, sheep and goats). Water from the Stampriet Aquifer is also used by nearby farmers for irrigation, producing vegetables, melon, grapes and maize.

Vegetation (mainly camelthorn forests) downstream of the Oanob Dam is provided with periodic water releases from the dam as an alternative to natural floods that are captured after the dam was built.

The environment is a silent water user, thus ecological water requirements should also be considered as necessary to support the river itself to maintain the eco-systems (for example trees, animals) dependent on the river.
Water demand management - how to use water more efficiently

Water demand management (WDM) is a very important part of IWRM. WDM aims to improve water use efficiency by reducing water losses or changing the wasteful way people use water. WDM is an approach to achieve “water use efficiency”.

WDM is implemented through education and information; training; using economic and financial principles; water pricing and tariff policies (e.g. rising block tariffs) and technical measures.

The price of water supply services are determined by the cost to develop a water source; the distance the water has to be transported by pipeline/canal, the treatment costs, storage of treated water, pipelines to the consumer and the topography which determines the pumping cost to supply the water.

The consumer base and technology, i.e. household taps or pre-paid meters, that is affordable to various income groups, also have an effect on the cost of water.

The ability of Local Authorities to enforce credit control measures also influences water consumption.

Groundwater in the basin is a scarce and precious resource which needs to be used wisely if plants and trees are to continue providing fodder for livestock and springs and boreholes are to continue supplying water.
Water supply chain, showing the process from source to the tap of a household, is the basis on which water services are charged.
Municipal costs to provide a household with water and sanitation services include charges for water collection from a source; water production (treatment of raw water to drinking water standards); water delivery to the consumer and wastewater treatment and disposal. Wastewater collection and treatment contribute to hygienic environments and form part of the water chain to prevent pollution in order to ensure that good water quality and sanitation is achieved. Therefore it is essential that water consumers PAY for water services to ensure continued quality and efficient service delivery.

In rural areas, the community based water management programme under the Directorate of Water Supply and Sanitation Coordination, established mechanisms for users to pay for water services. In addition, mechanisms for transparent and targeted subsidies for those who are unable to pay for water services are being considered. Local water point committees manage local aspects of water services, preventing issues such as illegal connections and vandalism to pipelines.

Different ways to save water in urban households:
1. Schedule garden watering for early or late in the day (before 10 am and after 4 pm)
2. Avoid the use of hosepipes for cleaning floors, pavements or cars; instead use buckets
3. Make use of retrofits (replacement with equipment specifically designed to reduce water use) such as:

“The price for water services should be set in such a way that the price does not prevent consumers from obtaining sufficient water (quantity and quality) to meet fundamental domestic needs.”
3.1 Low flush and dual flush cisterns that are being used more and more. Reducing the volume of existing toilet cisterns can be achieved by:
* Placing a 1 to 2 litre plastic bottle filled with water, or a brick wrapped in plastic, inside the cistern. This will decrease the volume of water held within it.
* Bending the swirller arm inside the cistern downwards so that the inflow valve is shut off when the water reaches a lower level than previously.

4. Fix or report to the municipality any moisture or leak problems immediately. Most water leaks occur from toilet cisterns. A single leaking toilet cistern can lose up to 7 000 litres of water per day.

5. Explore rain water harvesting (collection and storage of rain from run-off areas such as roofs) options. Remember - the first flush of new rain should be run to waste, before collection starts.

6. Keep track of water usage by regularly reading the water meters.

A Word of Caution:
It is important to seek good advice from a knowledgeable dealer as not all water-efficient fittings and devices are appropriate for every location. Also consider whether the fittings can withstand rough and frequent use.
Water quality

The quality of water is determined by its aesthetic (colour, smell, turbidity), the chemical and the bacteriological quality. There is a direct link between water quality and health and therefore it is important to be able to differentiate between safe and unsafe water sources. Water quality is determined by both natural and human-induced contaminants (pollutants) that may have found their way into the water supply. Naturally, water contains varying concentrations of dissolved oxygen and other gases, microscopic living organisms, tiny particles of dead decaying organic matter, inorganic salts and sediments. The water is described to be highly saline, when the concentration of salts dissolved in the water is high. This includes nitrates, fluorides, sulphates as well as sodium chloride and carbonates. Water with high salinity tastes salty and is usually called ‘brackish’ water.

In some areas (Aminius), saline water overlies the freshwater and has the potential to contaminate the freshwater. It is reported that water in the basin becomes more salty towards the Botswana border. The quality guidelines for drinking water have been set out by the Department of Water Affairs and Forestry, Water Environment Division.

Borehole drilling and water abstraction is controlled through a permit system to prevent water from leaking out of the artesian aquifers into the upper Kalahari aquifer and to reduce over abstraction from the artesian aquifers.

Groundwater monitoring is considered very important, not only to understand and identify water quality trends and related indicators, but also to determine the availability of acceptable quality water sources. The Geohydrology division in the MAWF is responsible for groundwater investigation and monitoring.
Water sanitation and hygiene

Sanitation is vital for human health, generates economic benefits, contributes to dignity and social development, and protects the environment. Sanitation promotion focuses on stimulating demand for ownership and use of a physical good. Access to basic sanitation refers to access to facilities that hygienically separate human excreta from human, animal, and insect contact. Hygiene promotion focuses on changing personal behavior related to safe management of excreta, such as washing hands and disposing safely of household wastewater. Both are essential to maximize health benefits. Lack of sanitation facilities and poor hygiene cause water-borne diseases such as diarrhea, cholera, typhoid and several parasitic infections. Provision has been made for both urban and sanitation management objectives and principles in the Water and Sanitation Sector Policy of 2008, to contribute towards improved health and quality of life.

Considering that Namibia is a water-scarce country, in most (rural and urban) instances, the most affordable individual household or community sanitation option are ecological or dry sanitation facilities, however where possible it should be left to the individuals to decide on the most appropriate technological and payment options as well as maintenance responsibility allocation. The institutions responsible for water sanitation and hygiene are divided into the following categories:

- Public health issues and awareness: Ministry of Health and Social Services; Directorate of Water Supply and Sanitation Coordination within the MAWF; Regional Councils and Local Authorities
- Health policies and legislation: Ministry of Health and Social Services
- Advice and research on alternative sanitation options and development: Habitat Research and Development Centre

Washing hands with soap at key times such as after going to the toilet can reduce the occurrence of diarrhoea.
Challenges of IWRM in the basin

The IWRM challenges in the basin are linked with climate variability and associated changes. In particular, the basin is highly prone to the following challenges:

- **Land degradation and deforestation:** The topsoil of land contains valuable nutrients for vegetation to grow. When vegetation cover or trees are destroyed (either through high population growth or overgrazing due to high livestock concentrations in an area) the land becomes vulnerable and results in topsoil being easily blown away by wind; increased run-off (rainwater not infiltrating in the soil) and therefore causes loss of agricultural productivity (soil fertility).

- **Bush encroachment:** Invader bushes is the highest single consumer of groundwater, with detrimental long-term consequences on the sustainability of groundwater resources and fodder availability.

Due to the arid and highly variable climate in Namibia, water resource managers and users have to focus on improving efficiency of water resource use through improvement of water demand management practices.
Future of water in the basin

The basin is predominantly rural in nature (covered by Kalahari sand) and relies heavily on groundwater sources, therefore major challenges include the location of sustainable boreholes to meet the water demand in the basin.
Basin management related information:

Note: some information used in this booklet is extracted from the above-mentioned material.
Every human should have the idea of taking care of the environment, of nature, of water. So using too much or wasting water should have some kind of feeling or sense of concern. Some sort of responsibility and with that, a sense of discipline.

The 14th Dalai Lama Tenzin Gyatso quoted in Peter Swanson’s Water: The Drop of Life, 2001
Acknowledgements

The booklet is compiled by the IWRM Joint Venture Consultants (Namibia) as part of the development of an Integrated Water Resources Management Plan for Namibia, on behalf of the Ministry of Agriculture, Water and Forestry.

This booklet was reviewed by the multi-sectoral Steering Committee of the IWRM plan.

The booklet is funded by African Water Facility administered by the African Development Bank.

Photo credit: Desert Research Foundation of Namibia