A demonstration of the hydrographic partition of the Benguela upwelling ecosystem at 26°40’S

CM Duncombe Rae

Marine and Coastal Management, Department of Environmental Affairs and Tourism, Private Bag X2, Rogge Bay 8012, South Africa; current address: School of Marine Sciences, University of Maine, Orono, ME 04469, USA
e-mail: duncombe@umeoce.maine.edu

Introduction

The upwelling of the Benguela system on the South African and Namibian continental shelf is driven primarily by wind forcing. A high-pressure system over the central South Atlantic Ocean gyre induces south-easterly winds along the southern African coast, modified by seasonal low pressure over the continent and eastward-moving cyclones to the south (Nelson and Hutchings 1983, Tyson 1986). These influences tend to promote the upwelling-favourable, south-easterly winds during the spring and summer in the southern part of the Benguela upwelling system (south of Hondeklip Bay, about 30°18’S) and during autumn and spring in the northern Benguela, from about Cape Cross (21°46’S) to north of Cape Frio (18°26’S). However, the central Benguela (from about 26°S to 28°S) experiences almost perennial upwelling-favourable conditions (Shannon 1985, Shannon and Nelson 1996). The upwelled water that reaches the surface of the shelf is drawn primarily from central water masses above 180–200m depth (Andrews and Hutchings 1980, Shannon and Nelson 1996).

Three major current systems external to the system influence the waters within the Benguela upwelling system: the eastern boundary current of the South Atlantic (the Benguela Current); the cyclonic equatorial circulation to the north in the Angola Basin (the Angola Current); and the western boundary current of the South Indian Ocean to the south (the Agulhas Current). Thus, uniquely among eastern boundary current upwelling systems, the Benguela has warm water current systems on both poleward and equatorward boundaries.

At 32°S, the transport of the Benguela Current above \(\sigma_\theta = 27.75 \text{kg m}^{-3} \) is about \(21 \times 10^6 \text{m}^3 \text{s}^{-1} \) toward the north (Stramma and Peterson 1989, Peterson and Stramma 1991). Embedded within this flow is the input from the Agulhas Current that retroflects south of Cape Town and sheds rings from the retroflection (Lutjeharms 1981, Gordon 1985, 1986). These rings, moving generally in a north-westerly direction (Byrne et al. 1995), may interact with the upwelling system (Duncombe Rae et al. 1992b) and influence the fish species on the shelf (Duncombe Rae et al. 1992a). The shelf-edge jet flowing from the western Agulhas Bank (Bang and Andrews 1974) also brings warm water and fish eggs and larvae into the Benguela system near the surface.

The influence of the northern current begins at the Angola-Benguela Front (ABF). The surface expression of this strong temperature front is highly mobile, moving north and south rapidly, but the front maintains position between 14°S and 16°S through the year (Meeuwis and Lutjeharms 1990). The waters of the Angola Current enter the Benguela along the shelf edge and slope as a poleward undercurrent, bringing low-oxygen water into the northern Benguela below the seasonal thermocline (Nelson 1989). Occasionally, the wind forcing of the Benguela upwelling abates...
dramatically and the ABF encroaches much farther into the northern Benguela, establishing an El Niño phenomenon in the South Atlantic (Shannon et al. 1986).

In the ocean basins adjacent to the African continent, the bottom water is North Atlantic Deep Water (NADW) in the Angola Basin and Antarctic Bottom Water (AABW) in the Cape Basin, overlain by NADW up to about 2000 m below the surface. Above the NADW is Antarctic Intermediate Water (AAIW), and the main thermocline, up to the atmosphere-influenced seasonal thermocline and the surface (Chapman and Shannon 1985, Shannon 1985). For the present study, only the water masses of the intermediate layer and above are considered. The intermediate water occurs on the slope and shelf edge and the water masses below are too deep to influence the surface upwelling.

At Lüderitz, the wind forcing is perennial and the front between the upwelled water on the shelf and the oceanic water (the oceanic front) is far offshore. This upwelling centre has been characterised as the most intense in terms of wind forcing (Bakun 1996). The bathymetry of the shelf is wide and shallow at Port Nolloth and the Orange River mouth and, moving north, narrows abruptly south of Lüderitz. The modelling of coastal trapped waves by van Ballegooyen (1995) indicated that abrupt changes in the topography of the shelf inhibits the propagation of the wave in the alongshore direction and redirects the energy across the shelf, resulting in strong cross-shelf velocities near the shelf edge. Monteiro (1996) proposed the ‘gate hypothesis’ to explain the distribution of total alkalinity and carbonate in the Benguela upwelling system. One of the ‘gates’ identified was associated with the Lüderitz upwelling cell. The mechanism alluded to in maintaining the inhibition of poleward flow was wind-controlled upwelling combined with changes in topography.

In the central Benguela region between Lüderitz (26°S) and the Orange River shelf (30°S), relatively few cruises have provided data on the characteristics and dynamics of the water. The few studies of plankton and pelagic fish distribution suggest a discontinuity between the northern and southern Benguela (Badenhorst and Boyd 1980, Boyd and Cruickshank 1983, Barange and Pillar 1992), but it has not been definitively investigated. Certain species occur only north or south of the Lüderitz upwelling (O’Toole 1977, Shannon and Pillar 1986) and the area has been investigated as a barrier to the interchange of pelagic species (Agenbag and Shannon 1988). The hypothesis put forward is that the persistent winds induce appreciable offshore movement and create excessive turbulence, yielding an environment unsuitable for the consistent passage of organisms through the area.

The cycle of collapse and recovery of the Namibian pelagic fishery (Schülein et al. 1995, Boyer and Hampton 2001, Kanandjembo et al. 2001) has awakened renewed interest in the Lüderitz cell as a barrier and prompted re-examination of its effects and functioning. The intention of this paper is to describe the characteristics and the distribution of the water masses and water types present in the central Benguela to gain insight into the functioning of this part of the system.

Material and Methods

Data were drawn from the Southern African Data Centre for Oceanography (SADCO) and the Marine and Coastal Management (MCM) oceanographic database. For the horizontal sections, a standard product of SADCO was used in extracting data at a particular level. The data accessed covered the period from 1983 to 2002. The distribution of these data shows that most research surveys in this period have concentrated on the southern Benguela, and only a limited number of stations have been occupied near the Orange River mouth (28°38’S, 16°27’E) and farther north.

For the vertical sections, data from the transects of the Lüderitz and Orange River shelf regions on the BENguela Environment Fisheries Interaction and Training (BENEFIT) cruises conducted by the FRS Africana in June and July 1999 (see Hocutt and Verheyen 2001) and in February and March 2002 (see Verheyen and Ekau 2005), and the Agulhas-South Atlantic Thermohaline Transport Experiment (ASTTEX) deployment cruise conducted by the RV Melville in January 2003 were used (Figure 1). On the FRS Africana Voyage 155 (V155) cruise in 1999, a General Oceanics

![Figure 1: The positions of station lines shown in the vertical sections (Figures 3–5). The data are from the BENEFIT cruises of FRS Africana in 1999 (Lines GG, WB) and in 2002 (Lines E, H, L), and from the ASTTEX deployment cruise of RV Melville in 2003 (Line R).](image-url)
rosette and MkIIIC CTD were used to collect 1-m resolution data. Sensors were calibrated in the laboratory and with samples taken at sea. Temperature was accurate to ±0.005°C and salinity to ±0.008. On the FRS Africana V166 cruise in 2002, a Sea Bird 12-bottle carousel and SBE 9/11+ CTD with flow pumped through temperature, conductivity and oxygen sensors were used. The temperature was accurate to better than ±0.005°C, the error in salinity was ±0.005, and in dissolved oxygen to within ±0.05 ml l⁻¹ against the bottle samples. Data from the RV Melville cruise were of World Ocean Circulation Experiment quality (DA Byrne, University of Maine, pers. comm.). Standard oceanographic parameters (density, potential temperature, etc.) were calculated using the UNESCO (1983) algorithms.

Hydrographic profiles from the extremities of the Benguela upwelling system are depicted in the TS diagram (Figure 2). Stations representing the Angola Basin waters were selected from the two BENEFIT cruises in July 1999 and March 2002. In the Cape Basin, data from the ASTTEX deployment cruise in January 2003 and the FRS Africana V166 cruise were used. The criteria for selection of these particular station lines were related to the closeness of the station spacing, the completeness of the data, and the offshore extent of the line.

The water masses, which were observed in the data, are identified in Figure 2. To facilitate discussion of these water masses and their properties, these water masses are defined below.

Figure 2: TS diagram of the water column profiles from the northern and southern Benguela. Note the clear salinity difference between the central waters of the two extremes. The water mass definitions used in the text are superimposed. The water masses labelled are: ABW — Antarctic Bottom Water; NADW — North Atlantic Deep Water; LSAIW — Low Salinity Antarctic Intermediate Water; HSAIW — High Salinity Antarctic Intermediate Water; LSCW — Low Salinity Central Water; HSCW — High Salinity Central Water; MUW — Modified Upwelled Water; OSW — Oceanic Surface Water. The very low salinity seen in the surface water of some stations is owing to continental run-off. Water masses below the isopycnal shown (\(\sigma = 27.75 \text{kg m}^{-3}\)) are not discussed in detail in the text.
Water mass definitions

The Benguela upwelling system has two major inputs of water from external sources: the equatorial Atlantic in the north and the South Atlantic/South Indian in the south. Only water masses at densities $\sigma_\theta \leq 27.5\text{kg m}^{-3}$ are considered in detail here, because these are pertinent to the shelf and slope above the 1 000m isobath. Surface, central and intermediate water mass definitions from the literature are shown in Table 1 and the ones discussed in this contribution are shown in Figure 2. These water masses are summarised briefly here.

AAIW is formed at the surface in the sub-polar and polar regions and is recognised by a salinity minimum in the water column. AAIW has distinct characteristics in the northern and southern Benguela (Shannon and Hunter 1988, Talley 1996). There is a high-salinity AAIW (HSAIW) in the Angola Basin, which enters the northern Benguela in a poleward undercurrent along the shelf edge. The southern Benguela has a low-salinity AAIW (LSAIW) close to the Subtropical Front.

Like the AAIW, the central water has a northern, high-salinity component (HSCW) originating in the tropical Angola Basin and is referred to as WSACW or SACW in the literature (see Table 1). The low-salinity component of the central water (LSCW) is found in the Cape Basin and is termed Eastern South Atlantic Central Water (ESACW) in the literature.

Above the central waters, the high-salinity, high-temperature surface water was referred to as Tropical Surface Water (TSW) by Mohrholz et al. (2001). Because water with similar characteristics is found at the surface in the South-East Atlantic outside the tropics, the term Oceanic Surface Water (OSW) is preferred in this paper. The surface water is subject to the influence of precipitation and continental run-off from rivers into the Angola Basin, resulting in low salinities at the surface. This water is called LSSW (Mohrholz et al. 2001). In the southern Benguela, the run-off phenomenon is also present, caused by the outflow from the Orange River — run-off water (ROW) — although far less evident in extent and persistence than in the north, the Orange River flow being intermittent and controlled by dams in the hinterland.

The central water on the shelf is upwelled near the coast by the persistent winds. In contact with the atmosphere, the temperature and, to a lesser extent, salinity may be modified under the influence of solar heating and freshwater flux. This water is designated Modified Upwelled Water (MUW).

In general terms, the intermediate, central and upper waters can be summarised as having either (a) a high-salinity, high-temperature character indicating a tropical influence or (b) a low-salinity, low-temperature character indicating an Antarctic or sub-Antarctic influence, together with the appropriate surface modifications of the surface and upwelled water when this comes into contact with the atmosphere near the surface, and is subject to solar heating, wind forcing and turbulent mixing.

Results

Data from transects shown in Figure 1 were selected to show the distribution of the water masses in the Benguela system. It should be noted that the vertical sections were obtained from cruises that took place at different times of

Table 1: Characteristic values of potential temperature (T), salinity (S), and potential density (σ) for water masses of the Benguela upwelling system from the literature. The water masses are: AABW — Antarctic Bottom Water; NADW — North Atlantic Deep Water; AAIW — Antarctic Intermediate Water; RSW — Red Sea Water; SACW — South Atlantic Central Water; ESACW — Eastern South Atlantic Central Water; WSACW — Western South Atlantic Central Water; TSW — Tropical Surface Water; LSSW — Low Salinity Surface Water; UCW — Upper Central Water. RSW, an Indian Ocean water type in the Agulhas Current, has not been recognised as occurring in the Benguela and is included for comparison, as is the AAIW defined by Clowes (1950) and Duncan (1970) and used by Gründlingh (1985). The water masses used by Salat et al. (1992) are included for completeness.

<table>
<thead>
<tr>
<th>Water mass</th>
<th>T ($^\circ$C)</th>
<th>S</th>
<th>σ (kg m$^{-3}$)</th>
<th>Source</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABW</td>
<td>0.4–1</td>
<td>34.7–34.75</td>
<td>Mohrholz et al. (2001)</td>
<td>Defines a block in TS space</td>
<td></td>
</tr>
<tr>
<td>NADW</td>
<td>2–3</td>
<td>34.82–34.88</td>
<td>Mohrholz et al. (2001)</td>
<td>Defines a block in TS space</td>
<td></td>
</tr>
<tr>
<td>AAIW</td>
<td>3–5</td>
<td>34.25–34.45</td>
<td>Mohrholz et al. (2001)</td>
<td>Defines a block in TS space</td>
<td></td>
</tr>
<tr>
<td>AAIW</td>
<td>4–6</td>
<td><34.6</td>
<td>Clowes (1950), Duncan (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSW</td>
<td>34.7–38</td>
<td>27–27.7</td>
<td>Lutjeharms (1976), Wyrtki (1971)</td>
<td>$S = 34.7$ in the Moçambique Channel</td>
<td></td>
</tr>
<tr>
<td>SACW</td>
<td>8–16</td>
<td>34.7–35.65</td>
<td>Mohrholz et al. (2001)</td>
<td>Based on Poole and Tomczak’s (1999) definition of WSACW. Defines a line in TS space</td>
<td></td>
</tr>
<tr>
<td>ESACW</td>
<td>5.96–14.41</td>
<td>34.1–35.3</td>
<td>Mohrholz et al. (2001)</td>
<td>Defines a line in TS space</td>
<td></td>
</tr>
<tr>
<td>TSW</td>
<td><31</td>
<td>~36.5</td>
<td>Mohrholz et al. (2001)</td>
<td>Source is river run-off</td>
<td></td>
</tr>
<tr>
<td>LSSW</td>
<td>~30</td>
<td>>31</td>
<td>Mohrholz et al. (2001)</td>
<td>Characteristics not provided</td>
<td></td>
</tr>
<tr>
<td>UWC</td>
<td></td>
<td></td>
<td>Mohrholz et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUW</td>
<td>12–18</td>
<td>34.9–35.2</td>
<td>Salat et al. (1992)</td>
<td>Cool Upwelled Water</td>
<td></td>
</tr>
<tr>
<td>AW</td>
<td>12–18</td>
<td>35.5–35.2</td>
<td>Salat et al. (1992)</td>
<td>Angolan Water</td>
<td></td>
</tr>
<tr>
<td>OW</td>
<td>16–22</td>
<td>35.2–35.5</td>
<td>Salat et al. (1992)</td>
<td>Oceanic Water</td>
<td></td>
</tr>
<tr>
<td>SUW</td>
<td><15</td>
<td>35.3–35.5</td>
<td>Salat et al. (1992)</td>
<td>Saline Upwelled Water</td>
<td></td>
</tr>
</tbody>
</table>
the year. The possibility of aliasing because of the seasonality of the Benguela system cannot be discounted. Although the discussion below is from a quasi-synoptic viewpoint, it should be borne in mind that precise positions of features may vary from time to time and that seasonal variability may occur. This aspect of the system could not be adequately addressed owing to the relatively low data density in both space and time.

The water masses present in the northern Benguela are shown by the section across the shelf at 18°23'S (Mowe Point, Figure 3a). The characteristics show that this water was predominantly of a tropical origin with high salinity in the central and surface waters. Inshore, low-salinity water was evident at the surface. It is assumed that this water was upwelled from the central water level and warmed by insolation.

At Walvis Bay (22°57'S), 540km farther south, the water masses were of the high-salinity type inshore over the shelf (Figure 3b). Low-salinity central water was also evident within the water column over the outer part of the shelf. This section does not extend far enough offshore to identify the water masses at the shelf edge.

Still farther south, at Line E (25°14'S), approaching the central Benguela, the low-salinity water masses predominate over the slope and basin (Figure 4a). The high-salinity water mass regime is present over the shelf edge and on the shelf.

In the central Benguela near Lüderitz (Figure 5a), vertical temperature and salinity sections (not shown) indicated that the water at the surface had been recently upwelled. In the water mass diagram, the central water thermocline was split into two parts, with a low-salinity characteristic above and a high-salinity characteristic below. The AAIW also showed a dual nature, with a high-salinity layer above a low-salinity layer. The HSCW appeared extensive, extending off the shelf over deep water, in contrast to the section farther north at 25°14'S (Figure 4a) where it was constrained to the shelf and shelf edge.

At 26°40'S (Lüderitz), the water character appeared to extend far across the shelf, suggesting that the shelf and shelf-edge water were deflected offshore (westward) along the line of stations. This presents a contradiction to the accepted theory of poleward undercurrents, because just south of this section the ≤1 000m isobaths turn towards the east, only bending offshore near 28°S on approaching the Orange Banks.

Farther south, on the Orange River shelf at 28°28'S, the water was almost completely of the low-salinity type (Figure 5b). The small amount of high-salinity central or intermediate water that was evident appeared deep in the water column on the slope.

The southern Benguela waters are relatively low in salinity in the central and intermediate levels, typified by the section across the shelf at 31°12'S (Line R, near Olifants River mouth) shown in Figure 4b.

Discussion

Poole and Tomczak (1999) examined the Atlantic Ocean thermocline (central water) layer for the South Atlantic and identified two source water mass regimes: Eastern South Atlantic Central Water (WSACW) and Western South Atlantic Central Water (WSACW). The ESACW is derived from the Indian Central Water through the Agulhas Current, and the WSACW is derived from the Brazil Current through the Brazil/Malvinas Confluence in the western South Atlantic subtropical gyre. In the eastern basins of the South Atlantic, the WSACW is present in the Angola Basin whereas the ESACW is found in the Cape Basin. Mohrholz et al. (2001) found the characteristics of WSACW in the region of the Angola-Benguela Front (ABF) to be modified from their source water characteristics by processes of the upper layers in the equatorial Atlantic. The difference in TS characteristics between northern and southern Benguela central waters was noted by Stander (1964) and was then ascribed to modification undergone during meridional movements.

Below the main thermocline, the AAIW on the west coast of southern Africa has a salinity of 34.35, rising to 34.50 near the ABF (Shannon and Hunter 1988, Talley 1996, Duncombe Rae 1998, Mohrholz et al. 2001). Higher salinities are found in the intermediate water on the East Coast, and in the Agulhas Current, owing to the influence of occasional intrusions of Red Sea Water (Gründlingh 1985). These latter high-salinity AAIW sources, however, appear not to influence the intermediate water of the central Benguela.

Horizontal sections of the data used here at various levels suggest that the generally accepted broad circulations depicted by Shannon and Nelson (1996, after Chapman and Shannon 1985) do not reflect the whole detail of the circulation. The steric height anomaly at 500dbar depicted by Reid (1989) shows two opposing gyres within the South Atlantic, raising the expectation that the water might have different characteristics at this level in each gyre. The two gyres have a confluence in the region of the Lüderitz upwelling cell, but the intensity and detail of the position of this confluence are not resolved. This circulation was further discussed and elaborated on by Mercier et al. (2003).

Monteiro (1996) observed discontinuities in the carbonate distribution in the Benguela system at the major upwelling centres, sites that he termed ‘gates’ (Figure 6). These discontinuities in the poleward flow on the Benguela shelf are characterised by strong wind stress, a maximum cyclonic wind stress curl, and narrowing of the shelf. One of the sites identified, at Cape Frio, is nearly coincident with the ABF, and therefore readily distinguishable in TS characteristics. The TS relationship at the Lüderitz upwelling centre is described here, whereas the third site, at Olifants River, does not appear to be discontinuous, at least in TS. Monteiro’s (1996) results showed that the discontinuities are subject to seasonal changes, periodically breaking down. Unfortunately the TS data available for the present study do not appear sufficiently dense in time and space to resolve the seasonal variations.

The constraint of the high-salinity water to the shelf edge evident along Line E (Figure 4a) appears consistent with a poleward undercurrent of Angola Basin origin. In the region of the Lüderitz upwelling centre, consistent with Monteiro (1996), the southward-moving water in the poleward undercurrent appears directed offshore at about the same level as a local oxygen minimum in the central water of the Cape Basin gyre.
Figure 3: Water masses on (a) a section (18°23’S) across the shelf at Mowe Point (Line GG, June 1999) and (b) a section (22°57’S) across the shelf at Walvis Bay (Line WB, June 1999). The water masses in the legend are defined in the text and Figure 2. Parameter/parameter plots of potential temperature (T) and dissolved oxygen (DO) against salinity (S) are shown.
Figure 4: Water masses on (a) a section (25°14'S) across the shelf near Easter Point (Line E, March 2002) and (b) a section (31°12'S) across the shelf near the Olifants River mouth (Line R, January 2003). The water masses in the legend are defined in the text and Figure 2. Parameter/parameter plots of potential temperature (T) and dissolved oxygen (DO) against salinity (S) are shown.
Figure 5: Water masses on (a) a section (26°42'S) across the shelf at Lüderitz (Line H, March 2002) and (b) a section (28°28'S) across the shelf near the Orange River mouth (Line L, March 2002). The water masses in the legend are defined in the text and Figure 2. Parameter/parameter plots of potential temperature (T) and dissolved oxygen (DO) against salinity (S) are shown.
Figure 6: Map of the Benguela system showing the subsurface inflow and corresponding outflow of central water between the slope and the shelf (after Monteiro 1996)
Discontinuity between water masses along Line H (Figure 5a) and Line L (Figure 6) suggests that the Lüderitz upwelling cell at 26°40'S stops the southward movement of high-salinity central water in the poleward undercurrent. As an indication of the extent of exchange between the two kinds of central water, the proportion of the HSCW within the water column was determined as a fraction of the central water as defined above. The distribution of this proportion (Figure 7) shows the exchange between the two extremes of the system occurring between Lüderitz and Cape Frio. As the vertical sections of water mass show, the water masses remain separable showing little mixing. It is only the extent of the denser, high-salinity portion that becomes less as the Lüderitz cell is approached.

Superficial interpretation of the vertical oxygen sections might lead to the inference that the low-oxygen signature in the central water, which is present both north and south of the Lüderitz upwelling cell, is continuous across the cell. Examination of the characteristic temperature and salinity shows that the water masses are different, leading to the conclusion that the low-oxygen signature south of the Lüderitz cell has a different origin from that to the north. What is the source of this low-oxygen signature? Oxygen minimum layers caused by biological oxygen demand are a global phenomenon in the intermediate and central waters, most plainly evident on the eastern margins of the ocean basins (Sverdrup et al. 1942, Childress and Seibel 1998).

The tropical ocean has a low oxygen content owing to the high temperature yielding a low oxygen saturation value. Moderate biological activity quickly leads to even lower oxygen concentrations in waters leaving the tropical regions. The low-oxygen water from the Angola Basin in the poleward undercurrent reaches the barrier at Lüderitz and leaves the shelf. South of Lüderitz, the source of the poleward undercurrent is central water from the Cape Basin, a cooler and less productive regime. Therefore, the oxygen concentration in that layer is higher while still a relative minimum in the water column. On the Namaqua shelf, from 29°30’S to 32°S, biological activity reduces the oxygen concentrations to levels approaching those of the poleward undercurrent in the north, whereas on the Namibian shelf similar activity reduces the lower-concentration source water to anoxic levels. Recent research reviews (Stramma and England 1999, Richardson and Garzoli 2003) and modelling results (Imasato et al. 2000) support this circulation scheme. Consistent with Monteiro’s (1996) observations, periodic breakdown in the poleward movement of low-oxygen water also occurs and has induced very low oxygen values as far south as St Helena Bay and the Cape Peninsula (L Hutchings, MCM, pers. comm.).

Conclusion

The Lüderitz/Orange River region appears to play an important role in the biological functioning of the Benguela upwelling system, acting as a barrier to the movement and exchange of some species between the southern and northern parts of the Benguela ecosystem (e.g. Ekau and Verheye 2005).

Wind stress is a persistent forcing influence. The waters brought to the surface by the intense upwelling induced by the persistent winds along the coast from the Orange River mouth to Walvis Bay create strong fronts along the shelf edge. The front is convoluted and dynamic, and the water that is upwelled leaves the shelf in the form of filaments and frontal eddies (Shillington et al. 1990, Duncombe Rae et al. 1992a). Drifter studies (Largier and Boyd 2001) show that surface water over the shelf south of the Lüderitz upwelling cell at 26°40’S tends to leave the shelf and head into deep water, where it is caught up in the greater eastern boundary current circulation of the South Atlantic gyre.

The water-mass analysis presented here shows that there is a hydrographic disjuncture in this area, more than...
might be caused by the turbulence and upwelling generated by persistent wind influence. The analysis shows that the central and intermediate water layers along the shelf north of the Lüderitz upwelling cell are not continuous with the central and intermediate water south of it. The ‘gate’ hypothesis proposed by Monteiro (1996) on the basis of carbonate distribution is supported by the water mass TS characteristics. Are the changes in topography and wind forcing in this region sufficient to account for the hydrographic partitioning observed? Is it the upwelling process that blocks the poleward movement of the equatorial low-oxygen water from the Angola Basin? Or is there some other explanation for the apparent discontinuity? The seasonality of the disjuncture is unknown and could not be investigated in this study on account of the general paucity of data in the region. This aspect therefore requires further investigation.

Data collected over the shelf edge and into deeper water on the slope with CTD casts that extend through the entire water column (to near-bottom) are required to answer these and other questions definitively. A regional numerical model might also provide more insight into the fundamental processes controlling this internal boundary within the Benguela upwelling system.

Acknowledgements — I thank all ship’s staff, scientists and trainees who stood watches and assisted in the collection of data on the cruises; BENEFIT management and secretariat who provided logistic support for cruises; Marten Gründlingh and SADCO personnel for maintaining the data centre and archive; MCM staff, particularly Marcel van den Berg, who assisted with data processing and archiving. Funding was provided by MCM and through BENEFIT projects. Deirdre Byrne (University of Maine), Larry Hutchings (MCM) and Marek Ostrowski (IMR, Bergen) commented on the manuscript in the early stages. Reviews by P Monteiro and V Mohrholz provided additional insights and improved an earlier version of the manuscript. The author is an Honorary Research Associate of the Oceanography Department, University of Cape Town, South Africa.

References

MEEUWIS, J. M. and J. R. E. LUTJEHARMS 1990 — Surface

