Wind Energy and Bird Conservation: Acoustic Technologies for the Assessment of Risks to Migratory Birds

Dr. Christopher W. Clark, Bioacoustics Research Program
Dr. Andrew Farnsworth, Conservation Science Program
The many names of migration. . .

• Many birds engage in “directed” movements, often involving a return to origin, to escape adversity and to exploit seasonal resources.

• Many internal and external factors govern migration.
Many birds migrate at night
Many species produce flight calls: unique vocalizations, varying in frequency, duration, and pattern; primarily given in sustained flight, presumably for communication.

Dickcissel Black-billed Cuckoo Red-breasted Nuthatch
Bobolink White-throated Sparrow Swainson’s Thrush

Evans and O’Brien (2002)
Bird migration by radar, microphone
Temporal patterns

Farnsworth and Russell 2007

The Cornell Lab of Ornithology
Composition across time and space
Why study migrants and migration using acoustic technology?

- collecting for extended periods at difficult-to-access sites;
- recording secretive species that vocalize infrequently;
- generating permanent record for repeated sampling;
- estimating variation in probabilities of detection
Identifying key stopover habitats

Images from Gauthreaux, Clemson University Radar Ornithology Laboratory
Why study migrants and migration using acoustic technology?

Sample beyond the range of traditional protocols

Monitor humans activities that create new hazards
Challenges of applying acoustic technology for monitoring migrant birds

- Massive amounts of data to analyze
- Accelerating pace of automated software development needed for detection and classification
- Understanding detectability, localization, calling-rates, and quantification
- Continued identification challenges
- Species groups that don’t call
Wind Energy and Bird Conservation

Existing and proposed wind farms in US and MX (2008)

- 26,000+ turbines
- 1.5% of potential

Wind resources overlap with significant bird migration corridors

“Build-out” to reach potential would require 1.7 million turbines
Wind Energy and Bird Conservation

- Airspace as bird habitat
- Rotor-swept area = 4 acres
Offshore Wind Development

Middelgrunden, Denmark

3 km (1.86 mi)
Wind Energy and Bird Conservation

“conventional wisdom”

Causes of Bird Fatalities

Erickson et al. 2002

- Wind
- Communication Towers
- Pesticides
- Vehicles
- High Tension Lines
- Other
- Cats
- Buildings/Windows

BUT, data from few sites with few turbines, using inconsistent methodologies
Wind Energy and Bird Conservation

What we know:

Areas with most favorable winds are also often associated with migratory pathways.

Birds and bats do collide with turbines causing mortality, especially during migration.

Population level effects are unknown because of a lack of standardized research.

No mandatory environmental impact guidelines.

Need *coordinated research* to assess risk and establish guidelines for siting and operation of turbines based on science.

The Cornell Lab of Ornithology
Wind Energy and Bird Conservation

17-19 June 2009, Racine WI - Wind and Wildlife Workshop

What knowledge gaps constrain our ability to assess risk and predict impacts?

What primary research is needed to reduce uncertainties and point to wildlife-compatible solutions?

What data are required for accurate predictive models to forecast migration and assess risk at wind facilities?

Identify topographic, seasonal, and climatic variables

Criteria for identifying “red zones”
Future plans for conserving migrants

Combine different monitoring technologies

acoustics

eBird

radar

tracking
Acknowledgments and Support

• Special thanks: W.Evans, M.O’Brien, M.Lanzone; P.Ryan
• CLO Bioacoustics Research and Conservation Science Programs, Wisconsin DNR, College of William and Mary, USGS; and field crews from CLO, Powdermill Avian Research Center, Mogollon Rim, Yuma
• DoD Legacy Program (05-245, 06-245, 07-245); P.Morales, J.Mallory, C.Eberly, R.Fischer, J.Hautzenroder, and all DoD site contacts - Kyle Rambo, John Joyce, John van de Venter, Rayanne Benner, Chris Pray, Chris Dobony, Eric Kershner, Colin Leingang, Matt Klope, Rhys Evans, Gary Cottle