Environmental Information Service, Namibia for the Ministry of Environment and Tourism, the Namibian Chamber of Environment and the Namibia University of Science and Technology.

The *Namibian Journal of Environment* (NJE) covers broad environmental areas of ecology, agriculture, forestry, agro-forestry, social science, economics, water and energy, climate change, planning, land use, pollution, strategic and environmental assessments and related fields. The journal addresses the sustainable development agenda of the country in its broadest context. It publishes two categories of articles. **SECTION A: Peer-reviewed papers** includes primary research findings, syntheses and reviews, testing of hypotheses, in basic, applied and theoretical research. **SECTION B: Open articles** will be editor-reviewed. These include research conference abstracts, field observations, preliminary results, new ideas and exchange of opinions, book reviews.

NJE aims to create a platform for scientists, planners, developers, managers and everyone involved in promoting Namibia’s sustainable development. An Editorial Committee will ensure that a high standard is maintained.

ISSN: 2026-8327 (online). Articles in this journal are licensed under a Creative Commons Attribution 4.0 License.

Editor: J IRISH

SECTION B: OPEN PAPERS

Recommended citation format:

Supplement to “Checklist of the checkered beetles of Namibia” (Coleoptera, Cleridae)

R Gerstmeier

Published online: 23rd October 2019

Technische Universität München, AG Entomologie, Lehrstuhl für Zoologie, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; r.gerstmeier@tum.de

Date received: 30th August 2018; date accepted: 3rd October 2019.

Abstract

After presenting the first checklist of Cleridae of Namibia, this supplement includes results of the 2019 expedition of the author, data from Hans Mühle, Munich and reports on the genus Korynetes (published by Opitz 2018). It includes the label data (locations) from newly collected specimens, distribution maps and colour photos of Eucymatodera speciosa, new record for Namibia and Eucymatodera sp. 4. Consequently the number of checkered beetle species of Namibia increases to 45 species.

Keywords: Cleridae, checklist, Namibia, distribution maps, colour habitus photo.

Introduction

As mentioned in the first publication on Cleridae of Namibia (Gerstmeier 2018), some collecting gaps, especially in the northern and north-eastern parts are striking. An expedition during March 2019 showed some new results for the checkered beetle fauna of Namibia.

Material and Methods

All records are based on UV light-trapping, the light traps installed in trees in about 5-6 m height. The collecting was approved by a research permit (RPIV00012018) of the National Commission on Research, Science and Technology (NCRST). The specimens will be split between the collection of the National Museum of Namibia and the author’s collection. Map 1 shows all cited locations, red dots indicate the new localities.

Abbreviations are:

RGCM = Roland Gerstmeier Collection, Munich, Germany
SDEI = Senckenberg, Deutsches Entomologisches Institut, Müncheberg, Germany
TMSA = Ditsong National Museum of Natural History, Pretoria, South Africa (the former Transvaal Museum of Natural History)
WOPC = Weston Opitz Collection, Gainesville, USA

Supplement to Checklist

Subfamily TILLINAE

Diplocladus louvelii (Spinola, 1844). Map 2

Namibia, Region Sambesi, Susuwe NP, Nambwa, forest, S17°50.4’ E23°18.694’, 980 m, 22.03.2019, leg. R. Gerstmeier #17.

Eucymatodera speciosa (Gorham, 1883). Fig. 1, Map 3

Namibia, Region Kavango-East, Mahango NP, Rukange, S18°12.064’ E21°40.643’, 970 m, 20.03.2019, leg. R. Gerstmeier #15.

Maps 2-9: (2) Diplocladus louvelii; (3) Eucymatodera speciosa; (4) Eucymatodera sp. 1; (5) Eucymatodera sp. 4; (6) Gyponyx sp. 1; (7) Menieroclerus nigropiceus; (8) Phloiocopus ferreti; (9) Phloiocopus sp. 1.

Eucymatodera sp. 1. (see Gerstmeier 2018), Map 4

Namibia, Region Otjozondjupa, Dinosaur Tracks, 67 km NE Omaruru, S21°02.525'E16°24.092', 1516 m, 01.03.2019, leg. R. Gerstmeier #1 (4 ex.). Namibia, Region Kunene, Kaoko Lodge Campsite, 6 km N Kamanjab, S19°34.514'E14°50.714', 1264 m, 02.03.2019, leg. R. Gerstmeier #2. Namibia, Region Oshana, Etosha NP, Okaukuejo, S29°10.049'E15°55.042', 1133 m, 04.-05.03.2019, leg. R. Gerstmeier #4 (9 ex.). Namibia, Reg. Oshikoto, Etosha NP, Namutoni, 1100 m, S 18°48.26.53"E16°56'23.64", 07.03.2019, leg. R. Gerstmeier. Namibia, Region Otjozondjupa, Farm Hebron, 14 km S Okakarara, S20°43.128'E17°27.625', 1348 m, 08.-09.03.2019, leg. R. Gerstmeier #6 (3 ex.). Namibia, Region Otjozondjupa, Farm Vergenoeg, 50 km W Otjinene, S21°10.055'E18°18.049', 1498 m, 12.-13.03.2019, leg. R. Gerstmeier #8. Namibia, Otjozondjupa, 25 km N Okahandja, 1500 m, 21°42.552'S/016°53.047'E, 3.2.2019, leg. H. Mühle #4,26.

This species is separated from Eucymatodera sp. 1, because the pronotum of Eucymatodera sp. 4 is smooth.

Namibia, Region Otjozondjupa, Farm Hebron, 14 km S Okakarara, S20°43.128'E17°27.625', 1348 m, 08.-09.03.2019, leg. R. Gerstmeier #6. Namibia, Region Otjozondjupa, Farm Vergenoeg, 50 km W Otjinene, S21°10.055'E18°18.049', 1498 m, 12.-13.03.2019, leg. R. Gerstmeier #8. – Also recorded from Botswana.

Eucymatodera sp. 4. Fig. 2, Map 5

This species is separated from Eucymatodera sp. 1, because the pronotum of Eucymatodera sp. 4 is smooth.

Namibia, Region Otjozondjupa, Farm Hebron, 14 km S Okakarara, S20°43.128'E17°27.625', 1348 m, 08.-09.03.2019, leg. R. Gerstmeier #6. Namibia, Region Otjozondjupa, Farm Vergenoeg, 50 km W Otjinene, S21°10.055'E18°18.049', 1498 m, 12.-13.03.2019, leg. R. Gerstmeier #8. – Also recorded from Botswana.

Subfamily CLERINAE

Gyponyx sp. 1. (see Gerstmeier 2018), Map 6

Namibia, Region Kunene, Kaoko Lodge Campsite, 6 km N Kamanjab, S19°34.514'E14°50.714', 1264 m, 02.03.2019, leg. R. Gerstmeier #2.

Menieroclerus nigropiceus (Kuwert, 1893). (see Gerstmeier 2018), Map 7

Phloiocopus ferreti (Reiche, 1849). (see Gerstmeier 2018), Map 8

Namibia, Region Sambesi, Susuwe NP, Nambwa, Campsite, S17°52.623'E23°29.081', 949 m, 23.03.2019, leg. R. Gerstmeier #18.

Phloiocopus sp. 1. Map 9

Namibia, Region Otjozondjupa, Farm Vergenoeg, 50 km W Otjinene, S21°10.055'E18°18.049', 1498 m, 12.-13.03.2019, leg. R. Gerstmeier #4 ex. – Also recorded from Botswana.

Thanasimodes robustus (Boheman, 1851). (see Gerstmeier 2018), Map 10

Namibia, Region Otjozondjupa, Dinosaur Tracks, 67 km NE Omaruru, S21°02.525'E16°24.092', 1516 m, 01.03.2019, leg. R. Gerstmeier #1. Namibia, Region Otjozondjupa, Farm Vergenoeg, 50 km W Otjinene, S21°10.055'E18°18.049', 1498 m, 12.-13.03.2019, leg. R. Gerstmeier #8. – Also recorded from Botswana.
Maps 10-17: (10) Thanasimodes robustus; (11) Korynetes ligulus; (12) Korynetes nigritarsus; (13) Korynetes pelidnus; (14) Korynetes semistriatus; (15) Korynetes ustulatus; (16) Necrobia rufipes; (17) Prosymnus brevipenis.
Subfamily KORYNETINAE

Korynetes ligulus Opitz, 2018. (see Opitz 2018), Map 11

Korynetes nigritarsus Pic, 1948. (see Opitz 2018), Map 12

Namibgrens Farm, 23°37'S – 16°14'E, 4-II-2010, beating, R. Müller (TMSA).

Korynetes pelidnus Opitz, 2018. (see Opitz 2018), Map 13

Korynetes semistriatus Spinola, 1844. Map 14

Namibia, Region Otjozondjupa, Farm Hebron, 14 km S Okakarara, S20°43.128' E17°27.625', 1348 m, 08.-09.03.2019, leg. R. Gerstmeier #6.

Prosymnus brevipenis Opitz, 2016. (see Gerstmeier 2018), Map 17

Namibia, Region Kavango-East, Mahangu Lodge, outside, S18°08.289'E21°40.684', 1003 m, 18.-20.03.2019, leg. R. Gerstmeier #14.

With this second checklist, the number of checkered beetle species for Namibia increases to 45 species.

Discussion

The 2019 expedition yielded an equal number of species (10 species) as in 2018, but differed considerably in regards to the species composition. Only four species were recorded in both years (Table 1).

This could either reflect the geographic and hence general ecological situation as the north eastern parts of Namibia are generally wetter and hotter, or be attributed to the better rainy season in 2018, whereas 2019 saw less rainfall in the north western parts of Namibia (nearest BIOTA Observatory Mutombo, S03: March/April 2018: ~110 mm; March/April 2019: ~20 mm). Numerous studies show the effects of rainfall on vegetation and plant communities (Reyer et al. 2013) but information on the impact of climate change and rainfall patterns on invertebrates is limited.

<table>
<thead>
<tr>
<th>Species</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diplocladus louvelii</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eucymatodera sp. 1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eucymatodera sp. 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eucymatodera sp. 3</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Eucymatodera sp. 4</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Eucymatodera speciosa</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Teloclerus sp.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Wittmeridecus sp. n.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Gyponyx sp.</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>Phloiocopus ferreti</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Phloiocopus sp. 1</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Phloiocopus sp. 2</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Phloiocopus vagadorsatus</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Thanasimodes robustus</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Korynetes semistriatus</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Necrobia rufipes</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Prosymnus adustus</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Prosymnus brevipenis</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

\[\sum 10 = 34 = 10 = 41 \]
limited (Barnett & Facey 2016). In arid ecosystems, arthropods inhabit a wide range of microhabitats (Doblas-Miranda et al. 2009; Hadley & Szarek 1981) and comprise a wide variety of ecosystem functions (e.g. herbivores, predators, pollinators, seed dispersers, decomposers) and are important components of food webs and nutrient cycles (Prather et al. 2013). Hence direct and indirect effects (via vegetation) of rainfall on arthropod communities and likewise on the clerid community are likely. A new investigation on ground-dwelling arthropods in an arid savannah showed that the arthropod community composition, as well as activity density, was determined by intermediate term precipitation of 15 to 30 days, not by short- or long-term precipitation (Fischer et al., in review).

Acknowledgements

My sincere thanks go to Kenneth ǃUiseb (Ministry of Environment and Tourism), Loide Uahengo and Edgar Mowa (NCRST). John Irish (Namibia Biodiversity Database) helped in many ways and supported me with literature. Klaus Lendzian and Thomas Wagner (Technische Universität München) accompanied me again on this 2019 trip. And, as always, my wife Marianne organised the photographic work.

References

