Changing populations of birds and mammals in North Sulawesi

Article in Oryx · April 1996
DOI: 10.1017/S0030605300021530

CITATIONS
33

READS
136

2 authors:

Timothy G O'Brien
Wildlife Conservation Society
137 PUBLICATIONS 3,163 CITATIONS

Margaret F. Kinnaird
none
99 PUBLICATIONS 2,926 CITATIONS

Some of the authors of this publication are also working on these related projects:

Tropical Ecology Assessment and Monitoring (TEAM) program View project

Global Forest Biodiversity Initiative View project

All content following this page was uploaded by Margaret F. Kinnaird on 14 April 2015.

The user has requested enhancement of the downloaded file.
Changing populations of birds and mammals in North Sulawesi

Timothy G. O'Brien and Margaret F. Kinnaird

Oryx / Volume 30 / Issue 02 / April 1996, pp 150 - 156
DOI: 10.1017/S0030605300021530, Published online: 24 April 2009

Link to this article: http://journals.cambridge.org/abstract_S0030605300021530

How to cite this article:

Request Permissions : Click here
Changing populations of birds and mammals in North Sulawesi

Timothy G. O'Brien and Margaret F. Kinnaird

The issues of habitat loss and hunting are of paramount importance to wildlife conservation in Asia. In Sulawesi, Indonesia, these problems are having a serious impact on the vertebrate fauna. Using line-transect methods, the densities of 11 species of large birds and mammals were compared between 1979 and 1994 in the Tangkoko-DuaSudara Nature Reserve in North Sulawesi. During those 15 years, populations of anoa Bubalus depressicornis, bear cuscus Phalanger ursinus, crested black macaque Macaca nigra, maleo Macrocephalon maleo and red junglefowl Gallus gallus declined by 50–95 per cent while populations of Sulawesi pig Sus celebensis, Tabon scrubfowl Megapodius cumingii, Sulawesi tarictic hornbill Penelopides exarhatus and red-knobbed hornbill Aceros cassidix increased by 5–100 per cent. We considered hypotheses for these changes: habitat loss outside the reserve, habitat degradation inside the reserve, and hunting. Only hunting adequately explained the pattern of changing densities observed. Unless protection from hunting is enforced for these species, we may soon witness the demise of these unique animals in North Sulawesi and possibly throughout the island.

Introduction

Habitat loss, isolation and degradation are perhaps the most pernicious problems affecting wildlife populations around the world (Harris, 1984; Ehrlich, 1988). Land clearance for agriculture or timber adjacent to forests results in degraded habitats that are often abandoned and allowed to regenerate, creating secondary forest, scrub or grasslands. The value of these degraded lands to forest wildlife is variable; some forest species may use them, others may not. Associated with these anthropogenic habitat disturbances are additional pressures on wildlife. Commercial and subsistence hunting (Redford and Robinson, 1985; Redford, 1992; Srikosamatara et al., 1992) as well as agricultural-pest control place many wildlife species at risk.

The Indonesian island of Sulawesi provides a perfect case study of the effects of habitat loss, degradation and forest isolation on wildlife communities. Over the last two decades Sulawesi has lost over 67 per cent of productive wet lowland forest habitat (Whitten et al., 1987). Although commercial logging for export ceased to be important by 1981, logging for commercial and local use has continued and directly threatens endemic species such as the anoa Bubalus depressicornis and babirusa Babyrous babirussa. Land clearance for agriculture has converted additional forest land on slopes too steep for logging (Whitten et al., 1987).

Hunting of wildlife for commercial markets and personal consumption is common among the Christian people of North Sulawesi and bush meat is commonly available in the markets. The price of bush meat, moreover, is comparable to that of domestic meat, suggesting that bush meat is neither especially valued nor more economical than domestic meat.

The Tangkoko-DuaSudara Nature Reserve (Tangkoko) of North Sulawesi was formerly the core of a much larger, contiguous forest block that included the Wiau Protection Forest.
with corridors to the nearby Mt Klabat forest (MacKinnon and MacKinnon, 1981). In the late 1970s, K. and J. MacKinnon conducted surveys of large birds and mammals and concluded that the density of large vertebrates was higher in Tangkoko than in any other area in Indonesia. They rated Tangkoko as the most important conservation area in Sulawesi and an extremely valuable area for the maintenance of biodiversity in Indonesia.

Today, much of the Wiau Protection Forest has been converted to coconut farms and Mt Klabat forest has been reduced to a remnant at the top of the mountain. Tangkoko is effectively isolated and the entire forest complex has been reduced to less than half its original extent. The combination of habitat loss, hunting and previous census data provided an opportunity to assess the impact of human disturbance over a defined time period. In this paper we discuss changes over 15 years in population densities of selected large birds and mammals of Tangkoko in response to these pressures.

Sulawesi

Sulawesi is the largest and most central island of Wallacea, the biogeographical transition zone between the Asian region to the west and the Australasian region to the east. Sulawesi’s fauna has a high degree of endemism: 34 per cent of the bird species and 98 per cent of non-volant mammals are endemic (Whitten et al., 1987). These include endangered species such as the maleo *Macrocephalon maleo*, a bird that incubates its eggs in volcanic sands, the babirusa or pig deer, and the anoa, a dwarf buffalo. The diversity of macaques *Macaca* spp. is unrivalled elsewhere in Asia. In spite of its interesting biogeographical position, little has been written about the natural history of this important island and most of its endemic fauna.

![Figure 1. Map of Tangkoko-DuaSudara Nature Reserve in Sulawesi, Indonesia.](image)
Tangkoko-DuaSudara Nature Reserve

The Tangkoko-DuaSudara Nature Reserve lies at the northernmost tip of Sulawesi (1°34'N, 125°14'E; Figure 1). Tangkoko was first established as a forest reserve by the Dutch colonial government in 1919 and was retained in the nature reserve system after Indonesia gained independence. The reserve covers 8867 ha and its altitude ranges from sea level to 1350 m. There are three volcanoes in the reserve; a tuft cone (450 m) that resulted from an eruption in 1839, Mt Tangkoko (1100 m) and the twin peaks of DuaSudara (1351 m). The reserve has several villages on its borders, inhabited by people who cultivate coconut and other crops and hunt within the reserve.

A special feature of the reserve is the broad range of habitats within a relatively small area. There are seven recognized vegetation communities (MacKinnon and MacKinnon, 1981) including fire-maintained *Imperata* grasslands, early secondary forest on old farm sites, *Casuarina* forest, beach forest, lowland rain forest, submontane forest and elfin moss forest. Recent fires and extensive treefalls result in a complex mosaic of successional stages of forest communities, all within 6 km, from the ocean to the volcano summits (M. F. Kinnaird and T. G. O'Brien, unpubl. data).

Methods

Data were collected on 11 species of birds and mammals (Table 1) from April 1993 to March 1994, using line transects (Burnham et al., 1980) for estimating wildlife densities. Each month, two observers walked four transects, once in the morning and once in the afternoon. Transect lengths ranged from 4.65 to 5.9 km and the total length of transects walked was 42 km per month. For each animal or group of animals encountered records were made of the numbers observed, their perpendicular distance from the transect, time and elevation.

Population densities for the north slope of the reserve were estimated using three different line-transect estimation techniques, depending on the quality of data available for a species. The DISTANCE program (Laake et al., 1993) was used to make monthly, variable-width transect estimates for common species (encountered more than 20 times a month on average). Monthly fixed-width transect estimates were made for rare species (encountered fewer than 20 times a month). Finally, single, fixed-width estimates were made for the rarest species (observed fewer than 20 times a year). Monthly estimates were averaged for overall density estimates.

<table>
<thead>
<tr>
<th>English name</th>
<th>Scientific name</th>
<th>Endemic</th>
<th>Hunted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoa</td>
<td>Bubalus depressicornis</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sulawesi pig</td>
<td>Sus celebensis</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Javan rusa</td>
<td>Cervus timorensis</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Crested black macaque</td>
<td>Macaca nigra</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bear cuscus*</td>
<td>Phalanger ursinus</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Babirusa*</td>
<td>Babyroura babirussa</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Maleo</td>
<td>Maccephalon maleo</td>
<td>Y</td>
<td>Eggs</td>
</tr>
<tr>
<td>Tabon scrubfowl</td>
<td>Megapodius cumingii</td>
<td>N</td>
<td>Eggs</td>
</tr>
<tr>
<td>Red junglefowl</td>
<td>Gallus gallus</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Red-knobbed hornbill</td>
<td>Aceros cassidix</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sulawesi tarictic hornbill</td>
<td>Penelopides exarhatus</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

N, not endemic; Y, exploited.

© 1996 FFI, Oryx, 30 (2), 150–156
CHANGING POPULATIONS OF BIRDS AND MAMMALS IN NORTH SULAWESI

Figure 2. Percentage change in population density of selected large bird and mammal species in Tangkoko over 15 years (1979-94).

Our density estimates were compared with data reported by the MacKinnons in 1978/79. They conducted fixed-width line transect surveys each month for 15 months. We used a subset of the MacKinnon trails and also used observers that were trained by the MacKinnons in census work. It can be assumed, therefore, that methodological biases are minimal for the two data sets, except for intensity of effort. Density estimates generated by DISTANCE may be higher than fixed-width estimates for the same data. Comparisons between our DISTANCE estimates and MacKinnons', therefore, may be somewhat conservative for declining populations. Differences in density estimates between 1978 and 1994 are assumed to reflect real changes in animal populations.

Results and discussion

Changes in population density over 15 years were variable for the 11 species examined (Table 2; Figure 2). In general, mammal populations experienced the most dramatic changes in population densities; with the exception of the Sulawesi pig, none of the mammals have maintained former densities. Bird populations fared better: two populations declined but three increased.

We did not encounter Javan rusa or babirusa during our surveys (Table 2). Although rusa are observed infrequently in the study area, they occur at extremely low densities. The status of the babirusa was in doubt in the 1970s when one animal was released into the reserve (MacKinnon and MacKinnon, 1981); our data indicate that it has been extirpated from Tangkoko. The anoa population has declined by 90 per cent and appears to be on the verge of local extinction.

The decline of the crested black macaque population was first reported in 1989 (Sugardjito et al., 1989) and our figures indicate a continuing decline. The MacKinnons estimated the crested black macaque population in Tangkoko at around 15,000 individuals; today we estimate 3100. Given current trends, the crested black macaque population may disappear from Tangkoko in 25-100 years.

Table 2. The results of surveys of selected large vertebrates in Tangkoko DuaSudara Nature Reserve in 1993/94

<table>
<thead>
<tr>
<th>Species</th>
<th>Line transect model</th>
<th>Estimated density (per sq km)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoa</td>
<td>Year/Fixed</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Sulawesi pig</td>
<td>DISTANCE</td>
<td>12.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Crested black macaque</td>
<td>Fixed</td>
<td>58.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Bear cuscus</td>
<td>Year/Fixed</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Babirusa</td>
<td>None</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maleo</td>
<td>Year/Fixed</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Tabon scrubfowl</td>
<td>DISTANCE</td>
<td>6.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Red junglefowl</td>
<td>DISTANCE</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Red-knobbed hornbill</td>
<td>DISTANCE</td>
<td>67.3</td>
<td>17.7</td>
</tr>
<tr>
<td>Sulawesi tarictic hornbill</td>
<td>Fixed</td>
<td>2.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Among the ground-nesting birds, the maleo population is on the verge of extinction; we estimate only seven pairs left in the reserve. Red junglefowl have declined but not as dramatically as the maleo. These numbers are in contrast with those of the Tabon scrubfowl, another megapode, whose numbers have doubled in 15 years. Population densities of the canopy-dwelling Sulawesi tarictic hornbill and red-knobbed hornbill have both increased. Whereas the tarictic hornbill is still considered to be rare (O’Brien and Kinnaird, 1994), the red-knobbed hornbill densities are the highest recorded for any Asian forest hornbill (Kinnaird and O’Brien, in press).

In order to investigate the factors that could cause major population declines over a large component of the vertebrate community in a relatively short time, we examined three hypotheses that might account for the pattern of species densities today compared with 15 years ago; loss of habitat around the reserve, loss and degradation of forest within the reserve, and over-hunting (Table 3).

Destruction of the protection forest adjacent to Tangkoko has been ongoing for at least 10 years. In the past 3 years, we have witnessed large blocks of forest converted to coconut plantations. The expected effect on wildlife populations would be an initial increase in population density within the reserve as wildlife is compressed into the remaining habitat. For a community of relatively long-lived species in the early stages of habitat compression, initial increases in density would be followed by relaxation back to carrying capacity, or fluctuations about the carrying capacity as populations settle to some equilibrium. We expect, on average, that population densities would be similar to, or higher than, densities recorded by MacKinnon and MacKinnon, whose research was conducted prior to habitat loss.

The expectation of general population density increases is not borne out by the data. Most species have declined in density and only the hornbills, Tabon scrubfowl and Sulawesi pig exhibit population density stability or increases consistent with this hypothesis. Species that might best tolerate crowding would be those that include browse and leaves in their diet, for example the anoa and cuscus. These species declined. It therefore seems unlikely that habitat compression is the primary agent of the observed changes.

The second potential factor causing population changes is degradation of forests within the reserve. Over the past 15 years, habitat has been lost or altered due to fire and conversion of land to agriculture. Populations of species capable of exploiting early successional habitats and agricultural lands might be expected to increase in density, while those of primary forest specialists would be expected to decline. Crested black macaques, Sulawesi pigs, bear cuscus, Tabon scrubfowl, anoa and rusa all

<table>
<thead>
<tr>
<th>Species</th>
<th>Observed change</th>
<th>Expected response to: Habitat loss</th>
<th>Hunting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside</td>
<td>Inside</td>
</tr>
<tr>
<td>Anoa</td>
<td>D</td>
<td>N/I</td>
<td>N</td>
</tr>
<tr>
<td>Sulawesi pig</td>
<td>N</td>
<td>N/I</td>
<td>N</td>
</tr>
<tr>
<td>Crested black macaque</td>
<td>D</td>
<td>N/I</td>
<td>N</td>
</tr>
<tr>
<td>Bear cuscus</td>
<td>D</td>
<td>N/I</td>
<td>D</td>
</tr>
<tr>
<td>Babirusa</td>
<td>D</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td>Maleo</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Tabon scrubfowl</td>
<td>I</td>
<td>N/I</td>
<td>N</td>
</tr>
<tr>
<td>Red junglefowl</td>
<td>D</td>
<td>N/I</td>
<td>D</td>
</tr>
<tr>
<td>Red-knobbed hornbill</td>
<td>I</td>
<td>N/I</td>
<td>D</td>
</tr>
<tr>
<td>Sulawesi tarictic hornbill</td>
<td>I</td>
<td>N/I</td>
<td>D</td>
</tr>
</tbody>
</table>

D, decline; I, increase; N, no change.

Table 3. Observed changes in population densities of selected vertebrate species and expected responses of wildlife populations within Tangkoko to habitat loss outside the reserve, to habitat loss inside the reserve, and to hunting.

use secondary habitat to some degree, while
the maleo, Sulawesi tarictic hornbill and red-
knobbed hornbills are primary forest special-
ists (Kinnaird and O'Brien, in press). Again,
patterns of population increase and decline
are inconsistent with expectation of popu-
lation changes in response to loss and degra-
dation of habitat within the reserve.

We believe that the observed density pat-
tterns reflect the consequence of excessive
hunting and the differing ability of species to
reproduce quickly enough to compensate for
intense harvesting. Among the mammals, the
crested black macaque, the bear cuscus and
the anoa are in serious decline. Only the
highly fecund Sulawesi pigs with litter sizes of
eight or more are withstanding the harvest
pressure.

The endemic hornbills, although exhibiting
low reproductive rates (Kinnaird and O'Brien,
1993; O'Brien and Kinnaird, in press), are less
vulnerable because of hunting techniques.
Most local hunting is carried out using traps,
snares, air-powered pellet rifles and dogs.
These hunting methods are useful for hunting
terrestrial animals primarily; even pellet rifles
seldom bring down the canopy-dwelling
hornbills. For the megapodes, egg-collecting
rather than direct trapping is the most serious
threat. Megapodes are known throughout
South East Asia and the South Pacific for their
large eggs and unusual incubation habits
(Whitten et al., 1987). Maleo are communal
nesters, congregating at specific nesting
grounds where they incubate their eggs in
thermal soils or hot beaches. Nesting grounds
are limited in distribution and most are
known to collectors, resulting in the present
situation of over-harvesting throughout
Sulawesi (M. Argeloo, pers. comm.). Although
the Tabon scrubfowl also nests on beaches it
prefers to nest in rotting treefalls throughout
the forest. As a result, it is difficult to exploit
scrubfowl nests efficiently. The increase in
Tabon scrubfowl population density may
have resulted from a reduction in feeding
competition by large, ground-foraging jungle-
fowl and maleos as well as its relative safety
from human predators.

These results are similar to the findings for
exploited wildlife populations in the Amazon
and other parts of South America. Large pri-
mates and slowly reproducing ungulates
(such as tapir Tapir indicus) disappear first
(Robinson and Redford, 1991). Collared pec-
carries Tayassu tajacu, with high reproductive
rates thrive, while the less fecund white-
lipped peccary Tayassu pecari is hunted to local
extinction. We consider the Sulawesi pig and
babirusa as analogous to collared and white-
lipped peccaries and the parallel is clear.

Collection of maleo eggs is analogous to the
collection of sea-turtle eggs or swiftlet nests
(Francis, 1987; MacKinnon and Phillipps,
1993). The restricted nesting sites allow ef-
cient exploitation of nests, destroying the
production of the next generation if not con-
trolled. In Honduras, the exploitation of olive
ridley turtles is so intense that virtually all
eggs are harvested on some beaches (Lagueux,
1991). Tabon scrubfowl egg-collection is less
systematic and may be comparable to collec-
tion of rhea eggs Rhea americana in the Beni,
Bolivia (Stearman, 1992).

When humans first arrived in Sulawesi
around 30,000 bp (Whitten et al., 1987), they
found an island relatively free of large pred-
ators, but quickly filled this role themselves.
The diet of Sulawesi's first inhabitants con-
tained many of the species still hunted today.
Wildlife populations that formerly sustained
Sulawesi's people are now being driven into
serious decline as a burgeoning human popu-
lation places increased demands on forest
habitats and wildlife populations. Many
hunted species are officially protected by law,
but the laws are seldom enforced (USAID,
1994). Unless the people of North Sulawesi
modify their diet and decrease hunting press-
ure on wildlife we may witness the disappear-
ance of Sulawesi's unique vertebrate fauna in
the not-too-distant future.

Acknowledgements
This work was conducted under the auspices of the
Wildlife Conservation Society in collaboration with
the Indonesian Directorate General for Nature
Preservation and Forest Protection (PHPA) and
Puslitbang Biologi of the Indonesian Institute of
Science (PB/LIPI). Funding was provided by the
Wildlife Conservation Society, the National Geographic Society (grant no. 4912-92) and the Wenner-Gren Foundation for Anthropological Research (grant no. 5543). We thank Soetikno Wiryoatmodjo (PB/LIPI), Dedi Darnaedi (PB/LIPI) and Romon Palete (PHPA–North Sulawesi) for their kind help throughout our time in Indonesia. Farenheid Pontonudis, Aman Dorongi and Finche, PHPA guards, are thanked for assisting with data collection.

References

Timothy G. O’Brien and Margaret F. Kinnaird, Wildlife Conservation Society, International Programs, 185th and Southern Blvd, Bronx, NY 10460, USA.

Timothy G. O’Brien and Margaret F. Kinnaird, Wildlife Conservation Society, International Programs, 185th and Southern Blvd, Bronx, NY 10460, USA.