At present the authorities do not have the means to continue with a full scale investigation of the finds reported on here. Until time and money is available to do so this publication is to elicit useful comments. It is known that the Tsodab River reached the ocean during earlier times, cutting its bed into the tertiary dune surface (Martin, pers. com.). When dune sand was once more deposited in the west it blocked the river from entering the sea and the river sediments could no longer reach the ocean. They consisted of highly calcareous silts which were derived from the calcareous crusts and calcrites in the catchment area of the Tsodab. These sediments were deposited in the arms and ponds of the Tsodab formed by the engulfing dunes. In such a way pans and vleis developed which probably resembled those in evidence at Sossus Vlei.

Water stored in this way was used by the animals in the area. In the course of the year the level of the water in these pans dropped due to evaporation, seepage and usage by the animals. Consequently the surface of the silt layers along the higher lying edges became increasingly exposed towards the inner, lower lying areas. The animals followed the receding water across sediments which would still be wet and soft, leaving behind their tracks. In the course of drying out the sediments would shrink and harden. While the tracks were being preserved numerous mud cracks occurred.

These silt layers were often covered by aeolian sand as well as by more recent river sediments. A part of such an older silt layer was recently uncovered.

Within the framework of an archaeological project reconstructing past environments in the Namib stone tools had been found west of Tsodab Vlei (Seely & Sandelowsky; 1974). A surface collection of fresh water snail shells was dated to approximately 10 000 years.

In August 1975 the site where the snail shells had been collected was once more inspected. Along an eroded edge of a clay layer the imprint of a bird's foot became visible on a covered silt surface. This suggested that foot prints of other animals might be found beneath the present day surface. Consequently another visit to the site was arranged in November.

In the process of uncovering one of the lower silt-layers a series of eight large impressions in the surface were found. Five pairs of prints could be observed while one end pair appears to have been disturbed by a later silt layer. They have an oval shape and are between 60 cm and 80 cm long with a breadth of 20 cm to 25 cm. At the deepest point the impressions are 10 cm deep (fig. 1). These eleven tracks extend over a total area of 4,60 m x 1,20 m. The form of the silt indicates that the impressions were made while the surface was still soft and wet. Tracks of birds and other animals which are less striking on account of their smaller size and shallower impression can be observed on this surface as well. In other parts of the Namib similar tracks of animals today foreign to the area have been observed (Wendi, 1976).
It is not yet known what caused the pattern of large prints, but their repetitive regularity implies the movement of a living creature.

ACKNOWLEDGEMENT

We are most grateful to Mr Johan Ligthelm of the Nature Conservation and Tourism Division for his understanding and enthusiastic help. We also thank Mr B. J. G. de la Bat and Mr P. S. Swart for their cooperation and swift publication of this note.

REFERENCE

SEELY, M. K. and B. H. SANDELOWSKY

WENDT, W. E.

Plate 1: Five pairs of impressions in the residual silts.