BLOUBUFFEELSGRAS (Cenchrus ciliaris)
C. H. DONALDSON
DIREKTORAAT VAN LANDBOU, LANDBOUKOLLEGE GROOTFONTEIN
5900 Middelburg/Kaap, Republiek Suid-Afrika

EINLEITUNG

Die Informationen im vorliegenden Artikel gründen sich auf Forschungsergebnisse und Erfahrungen im Nordkapland und in Transvaal über eine Zeitspanne von ungefähr 15 Jahren.

1. INLEIDING

Blaubuffelgras (Cenchrus ciliaris) kom natuurlik voor in Noord-Afrika en tropiese en subtropiese dele van Afrika, Indië, Arabië en Madagaskar. Die gras is ook suksesvol ingevoer en verbou in ander subtropiese dele van die wêreld. Dit is ‘n nuttige grassoort vir aangeplante weidings in halfdor subtropiese omgewings en word gebruik in baie dele van Transvaal en Noord-Kaapland. Ten spyte van al sy goeie weidings-eienskappe is blaubuffel nie ‘n wondergras nie en word soms probleme ondervind by die vestiging en behoorlike gebruik daarvan.

Die inligting vervat in hierdie artikel is gebaseer op navorsingsbevindinge en ondervinding in die Noordoost Kaap en Transvaal oor ‘n periode van ongeveer 15 jaar.

2. KLIMAAT- EN GRONDVEREISTES

Blaubuffelgras (Cenchrus ciliaris, Molopotipe) is sterk meerjarige, hoog produserend, droogtebestand en is goed aangepas in die bosveldgebiede met reënval wat wissel tussen 400 en 600 mm en hoër. Die gras is baie gevoelig vir uiteres lae temperature. Die gras groei ten beste by ‘n temperatuur van 37°C en wanneer voeg nie beperkend is nie.

Blaubuffelgras vereis byna neutrale, diep, goed gedreineerde grondtipes met ‘n fyn, medium of swaar tekstuur. Hierdie gras kan egter nie baie suur grondtoestande (met ‘n pH van onderkant 5,5) verdra nie en sal net vir ‘n beperkte periode versuiptoe stand kan oorleef.

Die rol van die grond pH, die fisiese en chemiese toestande van Molopo sandgrond op die natuurlike vestiging van blaubuffelgras word in Tabel 1 geïllustreer.

TABEL 1 — Die invloed van die pH, die fisiese en chemiese samestelling van verschillende grondsoorte in die Molopogebied op die digtheid van natuurlike stande van blaubuffelgras:

<table>
<thead>
<tr>
<th>Grondtype</th>
<th>Vaal (Sand)</th>
<th>Ligbruin (Sand)</th>
<th>Ligte rooi (Sand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bouwbufferplante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>per vierkante meter</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,3</td>
<td>6,6</td>
<td>5,6</td>
</tr>
<tr>
<td>% Growwe sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21,9</td>
<td>22,7</td>
<td>26,2</td>
</tr>
<tr>
<td>% Fyn sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72,3</td>
<td>72,7</td>
<td>69,9</td>
</tr>
<tr>
<td>% Silik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,8</td>
<td>1,5</td>
<td>1,8</td>
</tr>
<tr>
<td>% Klei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,9</td>
<td>3,2</td>
<td>2,1</td>
</tr>
<tr>
<td>% P₂O₅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0091</td>
<td>--</td>
<td>0,0009</td>
</tr>
<tr>
<td>% K₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,011</td>
<td>--</td>
<td>0,006</td>
</tr>
<tr>
<td>% N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,040</td>
<td>--</td>
<td>0,016</td>
</tr>
<tr>
<td>% Grondvog by veldkapasiteit</td>
<td>8,6</td>
<td>7,2</td>
<td>5,6</td>
</tr>
<tr>
<td>% Grondvog by verwekingspunt</td>
<td>2,7</td>
<td>2,2</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Dit is baie duidelik uit gegewens van Tabel 1 dat grondparameters soos grond pH, klei-inhoud van die grond en grondvrugbaarheid ‘n baie belangrike rol speel by die natuurlike voorkoms en digtheid van blaubuffelgras in die veld van ‘n bepaalde gebied.

3. KEUSE VAN ‘N KULTIVAR

Navorsing in die Transvaal toon dat wat opbrengs en totale voedingswaarde betref die plaaslike kultivar, bekend as Molopo blaubuffelgras, net so goed en indien nie beter is as die meeste oorsese kommersiële Cenchrus ciliaris kultivars.
Drie-en-zyftig *Cenchrus ciliaris* seleksies en kultivars (insiuitende oorsese tipes) is teen drie ander grassoorte, naamlik ocelonaarsgras (*Eragrostis curvula*), smutsvingergras (*Digitaria smutisii*) en buffelsgras (*Panicum maximum*) getoets.

Die proef is oor 'n periode van vier jaar onder droëlandtoestande te Rietondale, Pretoria uitgevoer. Die jaarlike bemestingtoeienings was 900 kg/ha kalksteen-ammoniumnitraat en 300 kg/ha super-fosfaat. Die gemiddelde jaarlike hooi-opbrengs van enkele bloubuffelsgras-tipes wat die verskeie hoogte- en kleurklasse verteenwoordig asook ander grassoorte word in Tabel 2 weergegee.

TABEL 2 — Gemiddelde jaarlike hooi-opbrengs in ton/ha, (Rietondale, Pretoria):

<table>
<thead>
<tr>
<th>Grassoort en tipe</th>
<th>Hooi-opbrengs ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloubuffelsgras —</td>
<td></td>
</tr>
<tr>
<td>Groot-bloutipe (Molopo kultivar)</td>
<td>11,4</td>
</tr>
<tr>
<td>Bloubuffelsgras —</td>
<td></td>
</tr>
<tr>
<td>Med-Groot, groen</td>
<td>9,0</td>
</tr>
<tr>
<td>Bloubuffelsgras —</td>
<td></td>
</tr>
<tr>
<td>Med-Groot, groen-blou</td>
<td>7,7</td>
</tr>
<tr>
<td>Bloubuffelsgras —</td>
<td></td>
</tr>
<tr>
<td>Med-Kort, groen</td>
<td>5,5</td>
</tr>
<tr>
<td>Bloubuffelsgras —</td>
<td></td>
</tr>
<tr>
<td>Kort, groen</td>
<td>4,3</td>
</tr>
<tr>
<td>Oulaundsgras</td>
<td>15,4</td>
</tr>
<tr>
<td>Smutsvingergras</td>
<td>8,5</td>
</tr>
<tr>
<td>Buffelsgras</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Met die redelike gooi klimaattoestande van Rietondale, veral wat reënval (gemiddeeld 700 mm jaarlik) betref, is dit vanaf Tabel 2 duidelik dat oulaundsgras 'n hoër produksie lever as die beste bloubuffelsgras seleksies, terwyl smutsvingergras en buffelsgras baie gemiddeld is. Die hooi-opbrengs van oulaundsgras kan toegeskryf word aan eerstens, die gras se aanpasbaarheid in suurgronde, tweedens, reaksie op hoë bemessingspele en, derdens, beter groei in die lente maande wanneer toestande nog te koel is vir die ander grasse.

Hooi inname studies met skape het volgens die data in Tabel 3 getoon dat die gemiddelde inname van bloubuffelsgrashooi baie goed vergelyk met die van ander grassoorte.

Dit moet egter genoem word dat die kwaliteit van die hooi van sommige van die grasse baie benadeel is deur die weerstoestande. Dit was nie altyd moontlik om gooi hooi van vingergras en tot 'n mindere mate buffelsgras te maak nie.

4. VESTIGING

(a) Die goue reëls

Die is nie altyd makklik om bloubuffelsgras met saad te vestig nie maar deur die nakoming van die volgende reëls behoort daar nie groot probleme met vestiging te wees nie:

(i) Moeie vars geoeste of dowwe saad saai nie — die saad het 'n na-rypperiode (nadat dit geëos is) van 9 tot 18 maande nodig om behoorlik ryp te word. Ontkiening verbeter met storing — vanaf 3 persent direk nadat geëos is tot 40 persent na agt maande en meer as 70 persent na agtien maande. Sorg dat die saad goed gevorm en ryp is wanneer dit geëos word.

(ii) Die fosfor (P) inhoud en die suurheidsgraad van die grond moet aan die *minimum* vereistes voldoen, naamlik, hoër as 10 ppm (delfe per miljoen) P (optimum is 25 ppm) en 'n pH van 6 tot 7, onderskeidelik.

(iii) Die saadbedding moet fyn, kompakt en sonder onkruid wees en daar moet reserwe vorg in die ondergrond opgegaar wees.

TABEL 3 — Inname deur skape van hooi van verschillende grassoorte, uitgedruk in gram hooi ingeneem per kg lewende massa:

<table>
<thead>
<tr>
<th>Grassoorte</th>
<th>1973/74 Seisoen</th>
<th>1974/75 Seisoen</th>
<th>1975/76 Seisoen</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hooi inname</td>
<td>Hooi inname</td>
<td>Hooi inname</td>
<td>Hooi inname</td>
</tr>
<tr>
<td></td>
<td>g/kg lewende</td>
<td>g/kg lewende</td>
<td>g/kg lewende</td>
<td>g/kg lewende</td>
</tr>
<tr>
<td>Borseltjiesgras</td>
<td>33</td>
<td>27</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>(Anthophora pubescens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloubuffelsgras</td>
<td>29</td>
<td>26</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>(Cenchrus ciliaris)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smutsvingergras</td>
<td>37</td>
<td>25</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>(Digitaria smutisii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffelsgras</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>(Panicum maximum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 AGRICOLA 1986
(iv) Saai die saad *bo-op droë grond en trap of rol* dit in nadat dit gesai is.

(v) Die gras moet toegelaat word om te blom, voordat dit bewei word. Giaashuisproewe het bewys dat spanningsfaktore, soos onvoldoende fosfor inhoud van die grond, enige tipe vroëe ontblaring, onvoldoende grond-vog en en lae nag temperature, baie nadelig kan wees vir saalingontwikkeling en vestiging.

(b) Saaimetodes

(i) Bloubuffelsgrasplanter
 Waar groot oppervlaktes gevestig word, word aanbeveel dat die bloubuffelsgrasplanter gebruik word.

(ii) Per hand saai
 Saad word met die hand in die wielspore van enige trekker gegooi en dan weer met die trekkerwiele vasgetrap. Die saad kan met saagsels of kraalmis gemeng word of soos gesai word. Tregters gemaak van opgerolde kunsmisakkies en geheg aan die saaiers se belt is nuttig om te verseker dat die saad direk in die ry gesai word en om te voorkom dat die wind dit wegwaai.

(iii) Steggies met wortels kan in ploegvore van klam grond geplant word. Die rye moet na plant vasgetrap word.

(iv) Bloubuffelsgras kan ook tussen die rye van gewasse soos mielies of grondbone gesai word.

(c) Saaidigtheid, spasiëring en saaityd

Die resultate van 'n saaidigheid X spasiëring proef wat met bloubuffelsgras op die Mara Navoringsstasie oor vier jaar uitgevoer is, word in Tabel 4 aangegee.

Die 75 cm rye spasiëring (Tabel 4) het deurgaans hoër hooproduksie gelever as die ander twee spasiëring — hierdie spasiëring het betekenisvol verskil t.o.v. opbrengs. Die saaidigheid behandeling (Tabel 4) het egter 'n klein invloed op opbrengs verskille tussen die vier behandeling gehad.

In die praktyk is gevind dat die beste vestigingsresultate verkry is wanneer die saai gedurende laat Januari — begin Februarie in 75 cm rye en teen 3 kg saad per hektaar gesai word.

5. GROEIPATROON

Onder droëland toestande word die groeipatroon van bloubuffelsgras hoofsaaklik deur weersomstandighede bepaal. So byvoorbeeld is gevind dat die gras 60 dae in nat jare en 124 dae in droë jare geneem het om maksimum produksie te bereik. Onder besproeiing is gevind dat bloubuffel maksimum produksie na sewe weke bereik het.

'n Tipiese voorbeeld van 'n primère groei- en hersonspasiëring op bloubuffelsgras by die Mara Navoringsstasie word in Figuur 1 aangedui.

FIGUUR 1: Primère- en hergroeiproduksiepatroon en reënval (Mara Proefplaas). DM = droë materiaal

TABEL 4 — Die invloed van saaidigheid en spasiëring op die hooproduksie (kg/plot) van bloubuffelsgras (Mara):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spasiëring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breedwerpig saai</td>
<td>5,0</td>
<td>14,6</td>
<td>11,6</td>
<td>5,9</td>
<td>9,3</td>
</tr>
<tr>
<td>Rye 75 cm vanmekaar</td>
<td>5,5</td>
<td>16,4</td>
<td>12,0</td>
<td>5,8</td>
<td>9,9</td>
</tr>
<tr>
<td>Rye 150 cm vanmekaar</td>
<td>4,6</td>
<td>14,7</td>
<td>10,7</td>
<td>5,5</td>
<td>8,9</td>
</tr>
<tr>
<td>Saaidigheid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½ kg/ha</td>
<td>4,9</td>
<td>15,4</td>
<td>11,3</td>
<td>5,8</td>
<td>9,3</td>
</tr>
<tr>
<td>3 kg/ha</td>
<td>4,9</td>
<td>15,1</td>
<td>11,0</td>
<td>5,6</td>
<td>9,1</td>
</tr>
<tr>
<td>4½ kg/ha</td>
<td>5,0</td>
<td>15,2</td>
<td>11,6</td>
<td>5,7</td>
<td>9,4</td>
</tr>
<tr>
<td>6 kg/ha</td>
<td>5,3</td>
<td>15,2</td>
<td>12,0</td>
<td>5,9</td>
<td>9,6</td>
</tr>
</tbody>
</table>

AGRICOLA 1986

21
Afleidings uit Figuur 1:

Na effektiewe reëns aan die begin van die seisoen was daar ’n geleidelike toename in primêre groei, opgevolg deur ’n skielike toename in groei na die daaropvolgende goeie reëns, met die gevolg dat maksimum groei en produksie tydens die 12de week van aktiewe groei bereik is. Dit is interessant om op te let dat die produksie gedurende die 14de, 20ste en veral die 24ste week heelwat laer as die maksimum was — grondvog en temperatuur het hier ’n rol gespeel.

Die hergroei produksie was hoog gedurende die eerste twee weke en het redelik vinnig afgeneem veral na die agste week.

Die reënval het ’n groter invloed op groei in die begin van die groeiseisoen gehad as aan die einde van die seisoen.

6. BEMESTING

Bemesting is die belangrikste enkele faktor wat die lonendheid van aangeplante grasweidings bepaal en daarom is dit belangrik dat weidings op hoë potensiaal en vrugbare grond gevestig word om minder kunsmis te gebruik.

Dit sal wenstlik wees om die grond eers te laat ontleed sodat die kunsmistoeidiening daarvolgens aangepas kan word.

(i) Bemesting met vestiging

Stikstof en fosfor is die belangrikste voedingstowwe vir die groei en produksie van bloubuffelsgras. Omdat die grassoort nie baie suur gronde verdra nie, moet die pH van suurgrond met kalk verhoog word.

Die belangrikheid van stikstof en fosfor vir die groei van bloubuffelsgras word in die resultate van pot-proewe soos in Tabel 5 aangedui is, beklemtoon.

TABEL 5 — Droëmateriaal-opbrengs van Bloubuffelsgras (Drie snysels: 10 plante/ pot):

<table>
<thead>
<tr>
<th>Voedingstof behandeling</th>
<th>Gemiddelde opbrengs in gram per pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geen voedingstowwe</td>
<td>0,1</td>
</tr>
<tr>
<td>Geen fosfor</td>
<td>0,2</td>
</tr>
<tr>
<td>Geen stikstof</td>
<td>4,0</td>
</tr>
<tr>
<td>Geen sink</td>
<td>15,0</td>
</tr>
<tr>
<td>Geen molibdeen</td>
<td>16,0</td>
</tr>
<tr>
<td>Geen kalium</td>
<td>17,0</td>
</tr>
<tr>
<td>Geen boor</td>
<td>17,0</td>
</tr>
<tr>
<td>Geen swawel</td>
<td>17,0</td>
</tr>
<tr>
<td>Geen magnesium</td>
<td>17,0</td>
</tr>
<tr>
<td>Almal toegedien</td>
<td>17,0</td>
</tr>
<tr>
<td>Geen koper</td>
<td>18,0</td>
</tr>
<tr>
<td>Geen mangaan</td>
<td>18,0</td>
</tr>
</tbody>
</table>

Fosfaat is dus baie belangrik vir die vroeë groei (Tabel 5) en wortelontwikkeling van klein saalinge. Die grondfosforinhoud van die boonste 15 cm grondlaag behoort met vestiging hoër as 10 dpm P te wees — die gewenste P inhou by optimale groeiostande is 25 dpm P. Vaar grondontledingsdata nie beskikbaar is nie, kan 150-200 kg superfosfaat per hekter voor vestiging toegediend word. Waar die fosfaat in die grasreye gebandplaa word, kan ’n derde of die helfte minder gebruik word.

Stikstof (N) en ander voedingstowwe is gewoonlik nie tydens vestiging nodig nie. In die meeste semi-arieide bosveldgebiede sal stikstof en fosfaatbemestingstowwe gewoonlik nie ’n groot reaksie gedurende die eerste jaar na vestiging lever nie. Die boer moet besluit om stikstof toe te dien op grond van die kleur en groeiirag van die gras. Plante met ’n stikstof-tekort is gelerig, groei stadig en het min saadhofies as dit ryp word. Gesonde plante is diep blouerig-groen.

(ii) Bemesting van gevestigde bloubuffelsgras

Op gevestigde bloubuffel kan fosfor, indien nodig, aan die begin van die groei-seisoen teen 100 tot 200 kg superfosfaat vir lae potensiaalgebiede en 200 tot 400 kg vir hoë potensiaal toestande toegediend word. Stikstof kan na gelang van die hoeveelheid reën in een of meer gelyke toedienings van tussen 150 en 200 kg kalksteen-ammoniumnitraat (28% N) per hekter met ongeveer sesweek tussenposes toegediend word. Waar voortoestande gunstig is, kan genoemde hoeveelhede verdubbeld word.

‘n Verskeidenheid bemestingsproewe is in drie lokaliteite van die Transvalerreek uitgeoer om die invloed van verschillende peile, draers en verspreiding van stikstofbemesting op die produksie van bloubuffelsgras te bepaal. Die vernaamste bevindings kan as volg opgesom word:

In meeste bemestingsproewe is vergelykings getref tussen vier stikstof peile, naamlik 45, 90, 135 en 180 kg stikstof per hekter.

Deurgaans het plantproduksie toegeneem naarmate stikstof peile verhoog het. Ten spyte van hierdie tendens kon daar in die eerste jaar na vestiging geen beduidende produksieverskille tussen hierdie peile gevind word nie. Ouer weidings het egter goed op stikstof geregester.

Die invloed van tyd van stikstoftoediening op produksie word hoofsaaklik deur reënval en die lengte van die groeiseisoen bepaal. Dit beteken dat die beste reaksie op stikstofbemesting verkry sal word wanneer die stikstof aan die begin van die groeiseisoen toegediend word. Wat die verspreiding van die totale hoeveelheid stikstof te toegediend betref, is daar gevind dat die hoogste produksie verkry word waarof alles of die grootste gedeelte van die stikstof aan die begin van die reënseisoen toegediend word.

Die stikstofbemestingsproewe het verder getoon dat bloubuffelweidings in die Roodeplaat (reeënval
7. VOEDINGSWAARDE VAN BLOUBUFFELSGRAS

Die voedingswaarde van bloubuffelsgras word hoofsaaklik deur stikstofbemesting en die fysiologiese groei­stadium van die plant bepaal. Die invloed van snycliwensie en stikstofbemesting op die Ru-proteine inhoud en kunsmatige (in vitro) droëmateriaal­verteerbaarheid van bloubuffelshooi word in Tabel 6 aangedui.

TABEL 6 — Die invloed van snycliwensie en stikstof­bemesting op die Ru­proteine en kunsmatige (in vitro) droëmateriaal­verteerbaarheid van bloubuffelsgras:

<table>
<thead>
<tr>
<th>Stikstofpiele</th>
<th>Snycliwensie (weke)</th>
<th>Ru-proteine</th>
<th>In vitro verteerbaarheid % DM basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kg N/ha</td>
<td>3</td>
<td>10.1</td>
<td>67.1</td>
</tr>
<tr>
<td>50 kg N/ha</td>
<td>5</td>
<td>7.6</td>
<td>61.7</td>
</tr>
<tr>
<td>50 kg N/ha</td>
<td>7</td>
<td>5.7</td>
<td>58.9</td>
</tr>
<tr>
<td>Gemiddeld</td>
<td></td>
<td>7.8</td>
<td>62.6</td>
</tr>
<tr>
<td>160 kg N/ha</td>
<td>3</td>
<td>13.4</td>
<td>69.3</td>
</tr>
<tr>
<td>160 kg N/ha</td>
<td>5</td>
<td>9.7</td>
<td>58.0</td>
</tr>
<tr>
<td>160 kg N/ha</td>
<td>7</td>
<td>6.6</td>
<td>54.6</td>
</tr>
<tr>
<td>Gemiddeld</td>
<td></td>
<td>9.9</td>
<td>60.6</td>
</tr>
<tr>
<td>270 kg N/ha</td>
<td>3</td>
<td>15.3</td>
<td>7.5</td>
</tr>
<tr>
<td>270 kg N/ha</td>
<td>5</td>
<td>10.5</td>
<td>64.4</td>
</tr>
<tr>
<td>270 kg N/ha</td>
<td>7</td>
<td>8.4</td>
<td>53.8</td>
</tr>
<tr>
<td>Gemiddeld</td>
<td></td>
<td>11.4</td>
<td>62.9</td>
</tr>
<tr>
<td>Gemiddeldes N­piele</td>
<td>3</td>
<td>12.9</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.3</td>
<td>61.4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.9</td>
<td>55.8</td>
</tr>
</tbody>
</table>

Die volgende afgleidings kan uit die gegevens van Tabel 6 gemaak word:

Die droëmateriaal­verteerbaarheid en Ru­proteine van bloubuffel neem vinnig af nomate die gras ouer word. Die DM verteerbaarheid het gewissel van 70,5% vir 3 weke oue bloubuffel bemes met 270 kg N/ha tot 53,8% vir sewe weke oud gras bemes teen 270 kg N/ha.

Die persentasie proteine het afgeneem van 15,3% vir drie weke oue gras wat teen 270 kg N/ha bemes was tot 5,7% vir 7 weke oue bloubuffel wat teen 50 kg N/ha bemes was.

Daar is 'n sterk korrelasie tussen die hoeveelheid stikstof toegedien en die proteine inhoud van die gras. Daar is aanduidings (Tabel 6) dat verhoogde stikstof­toediening nie alleen geleidel het tot hoër proteinewaardes nie, maar het ook die droëmateriaal­verteerbaarheid van 3 weke oue gras verhoog.

8. BESTUUR EN BENUTTING

(a) Hooi

Die hooimaakproses met bloubuffelsgras lewer min probleme op in die semi­droë boerdery­gebiede. Alhoewel dit moontlik is om in een dag te sny en te baal neem dit normaalweg 2 tot 3 dae om hooi te maak. Omdat bloubuffelsgrasstingels reëlik dik is, word die uitdroogproses versnel deur dit te kene.

Een van die belangrikste faktore wat die kwaliteit van bloubuffelshooi bepaal, is die ouderdom van die materiaal sedert die laaste sny. Om maksimum hooi­produksie van 'n reëlik goeie kwaliteit af te haal, moet 'n mens probeer om die gras op 'n last py­py-
TABEL 7 — Die invloed van terugvoer van hooi aan beeste sowel as stikstof op hooproductie van die weidings (ton/ha):

<table>
<thead>
<tr>
<th>Terugvoer behandeling</th>
<th>Geen N</th>
<th>90 kg N/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>ton hooi/ha</td>
<td>1974/75</td>
<td>1975/76</td>
</tr>
<tr>
<td>Geen terugvoer</td>
<td>4,6</td>
<td>3,6</td>
</tr>
<tr>
<td>20 ton/ha</td>
<td>12,8</td>
<td>6,1</td>
</tr>
<tr>
<td>40 ton/ha</td>
<td>14,0</td>
<td>6,6</td>
</tr>
</tbody>
</table>

Die voer van 20 ton of 40 ton hooi/ha (en meer) aan beeste op bloubuffelsgras, met en sonder stikstofbemesting het 'n hoog beduidende invloed op die opbrengs van die weiding gehad, veral gedurende die eerste seisoen na die behandeling van die voer. Groot verskille in die opbrengs tussen die behandelings en die kontrole het selfs gedurende die tweede jaar na behandeling voorgekom (Tabel 7).

Baie belangrike vereistes vir die voer van hooi op bloubuffelweidings is, eerstens, dat die voerplekke gereeld binne die kamp verskuif word sodat die afval hooi, beessmis en urine ewereder oor die aangeplante weiding versprei word en tweedens dat die voerbehandeling alleenlik gedurende die wintermaande wanneer die grasweiding rustend is, toegelas word. Die behandeling moet gestaak word sodra die bloubuffelsgras begin bot, anders sal die dier konsentreer op die groenigheid van die weiding met die gevolg dat die vee minder hooi sal vreet en die groei en produktie van die weiding sal ook aansienlik afneem. Volgens die gegewens in Tabel 7 is dit duidelik dat die terugvoer van hooi op bloubuffelweidings 'n besparin in bemestingskoste sal meebring. Te veel vertrapting van die weiding deur die vee en 'n te hoë akkumulasie van onbenutte hooi en mis kanook ook nadelig vir die weiding wees. Die voer van tussen 10 ton hooi en 20 ton hooi per ha behoort omtrent reg te wees. Indien 15 ton hooi aan vee op een hektaar gevoer word en 2 bale gras hooi vir elke 3 volwasse beeste geloakeer word, sal 45 groot beeste benodig word om vir 100 dae op 4 hektaar gevoer te word.

(b) Beweiding

Bloubuffelsgras is, indien eers gevestig, in staat om 'n hoë weidingsdruk te weerstaan. Hierdie eienskap saam met die verskynsels om nuwe lote uit die wortels te vorm wanneer dit kort gewe of gesny word en om nuwe lote uit die stigels te vorm wanneer dit matig bewe word, beteken dat die gras met 'n verskeidenheid van stelstels benut kan word. Dierlike behoeftes en reaksies kan dus die oorheersende faktore wees in die benuttingspatroon.

Proewe in die Transvaal het bewys dat bloubuffelsgras goeie resultate kan lever onder aanhoudende beweiding, mits die drakrag nie oorskil word nie. Kollektiewe beweiding kan soms 'n probleem met hierdie metode wees. Optimale benutting kan egter deur die toepassing van wisselweidingstelsels verkry word.

Die getal kampe benodig vir doeltreffende benutting kan varieer van 'n minimum van 6 kampe tot soveel as 18 of 22 kampe per kudde. Die vermaaklike oogmerke van hierdie stelstels moet wees om te verhoed dat die gras fysiologies nie te volwasse raak nie, asook om die weiding nie te strem deur dit aanhoudend te kort te bewe nie. Om hierdie doelstelling te bereik, kan gebruik gemaak word van een van twee benuttingsmetodes, naamlik die "kort wei, lang rus" of die "matige ontblaring kort rus" metodes van grasbenutting. Waar 'n kamp gedurende die groei- seisoen kort afgewei word, sal normaalweg verwag word dat dit ongeveer 35 tot 42 dae moet rus voordat dit weer bewei word. Vir 'n 6-kamptelsel sal dit dus beteken dat waar 'n kamp oor 7 tot 9 dae kort gewei word, die daaropvolgende rusperiode 35 tot 45 dae sal duur. Waar 18 of 22 kampe gebruik word, sal 2 dae beweiding opgevolg word deur 34 of 42 dae rus. Met die toepassing van die "matige ontblaring kort rus" stelsel word die gras met elke beweiding net "getop" deur dit op 'n hoogte van ongeveer 50 cm te hou.

Maksimum produkties van goed bestuurde buffelsgrasweidings behoort verkry te word deur die toepassing van konserwatiewe belading hetens met die gereelde verjonging van die weiding deur hooi te maak in rotasie met die beweiding en gedurende die tye van oorproduksie.

9. PRODUKSIE EN DRAKRAGNORME VAN BLOU- BUFFELSGRAS

Hooi-opbrengste sal hoofsaklik afhang van die hoeveelheid reën en die grondvragbaarheid. Opbrengste behoort te wissel van 2 tot 4 ton/ha in droëlandetoe- stande met lae reënval (400 mm) tot 5 tot 8 ton/ha waar die reënval 400 tot 600 mm is. Onder besproeijing is opbrengste van oor die 30 ton/ha moontlik. Blouibuffelsgras hooi is normaalweg 'n goeie onderhoudsoor vir vee — goeie hooi is voldoende om droë en dragtige beeste in kondisie te hou.

Weidingsproewe het bewys dat die voedingswaarde van goed bestuurde buffelsgrasweidings voldoende behoort te wees om in die behoeftes van vleisbeeste wat in mei is en van jong groeiende vee te voorsien. Wat jaar-oud osse betref kan daalgrensleewendige massatoenames van tussen 700 en 1 000 g verwag word. Dit is egter gevind dat osse nie op bloubuffelweidings die gewense graderings behaal nie en dat voldoende afrooding slegs deur energievoeding verkry word. Koeie en kalwers handhaaf goeie massa op bloubuffelsgras terwyl die kalwers tussentien 800 en 1 000 g per dag toeneem. Gemiddelde speenmassa van 195 - 245 kg is behaal en die gemid-
Delde speenpersentasie van 86 - 94% is verkry van koëie wat uitsluitlik op bloubuffelweiding geloop het.

Die weidingskapasiteit van bloubuffelsgras is nou gekoppel aan groetoeandte en die hoeveelheid beemesting (veral stikstof) wat toegediens is, terwyl diereprestasie baie deur die belading beïnvloed word.

Die resultate van 'n weidingskapasiteit x stikstofbeemestingproef wat met bloubuffel en babalaweidings op Townoomba uitgevoer is, illustreer hierdie stellings. Die gemiddelde proefgegewens word in Tabel 8 weergegee.

Ander weidingsproewe wat oor minstens vier jaar geloop het, het bewys dat die volgende drakragte van goed bestuurde bloubuffelweidings verkry kan word.

Op die Springbokvlakte is 'n deur-die-jaar produksie stelsei 'n koei en 'n kalf per hektaar bloubuffel gedra. In hierdie stelsel is hooi van die surplus somergroei gemaak en aan die beeste gedurende die winter gevoer.

Die weidings het gemiddeld 251 diere weidingdae per ha geproduseer asook 2,9 ton hooi per hektaar. Die gemiddelde 205-dag aangepaste speenmassa van al die kalwers was 195 kg.

Op Townoomba Navorsingstasie is 'n koeikusde op bloubuffelsgras in 'n deur-die-jaar stelsel onder aanhoudende beemesting teen 'n belading van 1 koei en kalf op 2 hektaar gedra. Uitstekende kalfpersentasie (95%) en goeie speenmassa (245 kg) is behaal, met G.D.T.'s van 963 g vir verse en 1 075 g vir bulkalwers.

In 'n proef op die Mara Navorsingstasie is een vyfde van die veld met bloubuffelsgras vervang. Hierdie behandelings van veld plus bloubuffelsgras se drakrag was 1 GVE op 5,3 ha in vergelyking met die veld alleen behandelings se drakrag van 1 GVE op 9,1 ha.

| TABEL 8 — Gemiddelde daaglike lewendige massatoenames (GDT) in gram/os, die lewendige massa vleisproduksie in kg/ha en die aantal diere-weidae/ha (DWD/ha) onder 3 stikstofbeemestingspeile en 2 beladings: |
|---------------------------------|------------|----------------|---------------|------------|---------------------------------|
| **Bloubuffelweidings** | | | | |
| **Stikstof-peile kg/N/ha** | Belading | G D T | Produksie | Diere- |
| | osse/ha | (gram/dag) | kg/ha | weidae/ha |
| 50 kg N/ha | 1 Os/0.875 | 840 | 166 | 182 |
| | 1 Os/0.438 | 773 | 207 | 281 |
| 100 kg N/ha | 1 Os/0.875 | 932 | 181 | 186 |
| | 1 Os/0.438 | 777 | 326 | 347 |
| 150 kg N/ha | 1 Os/0.875 | 1 037 | 190 | 186 |
| | 1 Os/0.438 | 886 | 322 | 351 |
| | | | | |
| **Babalaweidings** | | | | |
| 45 kg N/ha | 1 Os/0.438 | 980 | 210 | 206 |
| 45 kg N/ha | 1 Os/0.219 | 798 | 339 | 345 |

Die gemiddelde jaarlikse reënveld was 560 mm.
Die gemiddelde beweidingsperiode was ongeveer 160 dae.

AGRICOLA 1986